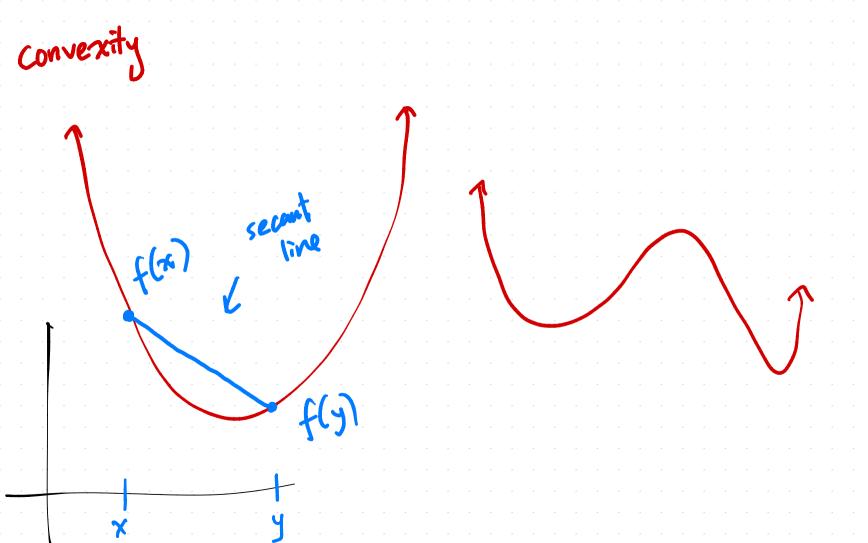
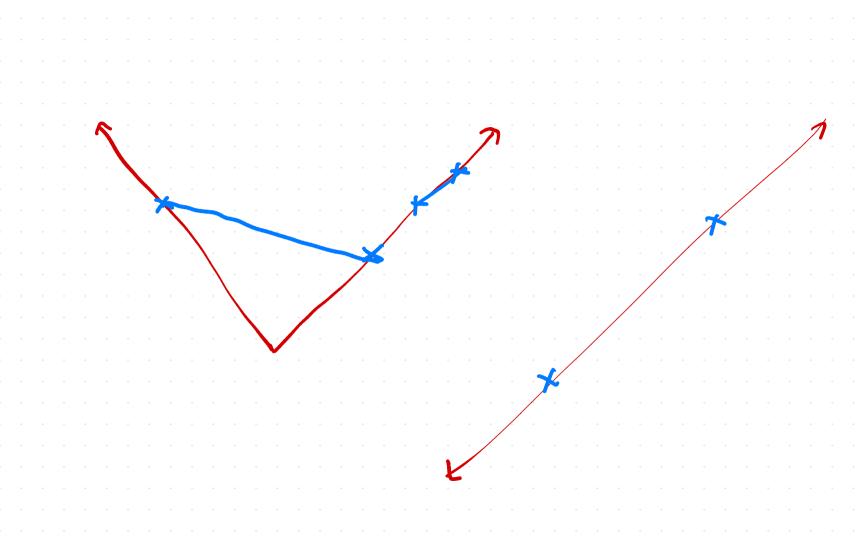


EECS 245 Fall 2025 Math for ML

Lecture 19: Convexity





$$f(y)$$

$$f(y)$$

$$kine segment: te[0,1]$$

$$f(x) + t (f(y) - f(x))$$

$$= f(x) + t f(y) - t f(x)$$

$$= (1-t) f(x) + t f(y)$$

Convexity $f: \mathbb{R}^d \to \mathbb{R}$ is convex if for all $\overline{x}, \overline{y}$ in \mathbb{R}^d and $0 \le t \le 1$,

 $\leq (1-t)f(\bar{x}) + tf(\bar{y})$ f((1-t) x+ ty)

line segment

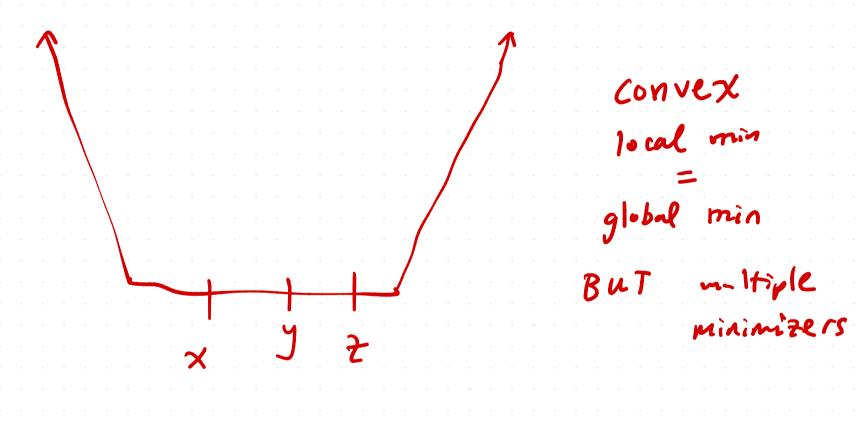
if f:1Rd > R is convex, then any local min
is a global min assume $\vec{\chi}^R$ is a local min, contradiction : but f(\(\frac{1}{2}\)) < f(\(\frac{1}{2}\)* formal def f((1-t) x*+ t=) \(\begin{aligned} (1-t) f(x*) + tf(\beta) \end{aligned} (x*, f(x*)) (z,f(z)) $\angle (1-t)f(\bar{x}^*) + tf(\bar{x}^*)$ $= f(\bar{x}^*) - tf(\bar{x}^*) + tf(\bar{x}^*)$

$$f(1-t)\vec{x}^* + t\vec{z} \leq f(\vec{x}^*)$$
why contradiction?
$$t=0$$

$$f(\vec{x}^*) \leq f(\vec{x}^*)$$
contradiction!

do all convex functions have a global min ?

strict convexity for all z, y & Rd, + & [0,1] f((1-t)x+ty) < (1-t)f(x)+tf(y)



if f strictly convex, then its mique global min (if exists) is unique contradiction 文* ≠ y different, but both suppose global minimizers of f, i.e. $f(\bar{x}^*) = f(\bar{y}^*) = m$ $f(1-t)\dot{x}^* + t\dot{y}^*) = (1-t)f(\dot{x}^*) + tf(\dot{y}^*)$ = (1-t)m + tm

> contradiction!

$$R_{sq}(\vec{\omega}) = \frac{1}{n} ||\vec{y} - \vec{x}\vec{\omega}||^{2}$$

$$Convex$$

(but is convex)?