Lab 10: Gradient Descent and Convexity
EECS 245, Fall 2025 at the University of Michigan

due by the end of your lab section on Wednesday, November 5th, 2025

Name:

unigname:

Each lab worksheet will contain several activities, some of which will involve writing code
and others that will involve writing math on paper. To receive credit for a lab, you must
complete all activities and show your lab TA by the end of the lab section.

While you must get checked off by your lab TA individually, we encourage you to form
groups with 1-2 other students to complete the activities together.

Recap: Convexity

A function f : RY — R is convex if for all # and ¥/ in its domain, and for any ¢ € [0, 1],

F(A=0)Z+tg) < (1=1)f(Z) +tf(Y)

The English interpretation of this definition is that the line connecting any two points on the
graph of f always lies on or above the graph of f. Intuitively, a convex function is a function that
curves upward, like a bowl.
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Activity 1: Using Convexity to Prove Inequalities

a) Suppose f : R — R is a convex function such that f(0) = 0. Prove that for all y € R and
te[0,1],
fty) <tf(y)

b) Let f : R — R be a convex function. Prove that 2f(5) < f(3) + f(7).




Activity 2: Understanding Complex Proofs
Let f : R” — R be a convex function. It turns out that the function ¢(Z), defined by

9() = (AT +1)

for some n x n matrix A and vector b € IR", is also convex, no matter what A and b are. We're not
going to ask you to prove this on your own: instead, we’ll give you a proof and ask you questions
to ensure you understand it.

Our goal is to show that g((1 — t)Z +ty) < (1 —1t)g(Z) +tg(y), for all Z,¥ € R" and ¢t € [0, 1].
We'll start with the “left-hand side” of the definition, and try and leverage f’s convexity.

g(1 = )T +t7) :f(A((l—t)f+t37)+l;) (1)
—f ((1 AT+ tAgj+6) )
= £ (1= 6)(A7 +5) + (A7 + 1)) 3)
< (1—t)f(AZ+0b) +tf(A7+D) (4)
=|(1-t)g(Z) + tg(y) (5)

a) In which line did we use the fact that f is convex?

—

b) How did we move from line (1) to line (2), i.e. f (A((1—t)f+ ) +b) f ((1—t)Af+tAgj+5)?

—

¢) How did we move from line (2) to line (3), i.e. f ((1 ) AT + tAG+ b) f ((1 —t)(AZ + D) +t(Ag+5))?




Recall, g(Z) = f(AZ + b), where A is an n x n matrix and Z, b € R™. On the last page, we showed
that if f is convex, then ¢ is convex.

Now, let’s explore what happens if f is strictly convex. Recall, this means that for all (non-equal)
Z and ¥ in its domain, and for any ¢ € (0,1),

F(A=t)Z+ty) < (1—t)f(Z) +tf(7)

d) Suppose rank(4) = n. Explain why it's impossible for AZ +b = Aj + b for two different
vectors ¥ and ¥.

e) Suppose rank(A) < n. Explain why it’s possible for g(Z) = g(¥) for two different vectors &
and y. Hint: Think about nullsp(A).

f) Using the above reasoning, explain why if f is strictly convex, then g is strictly convex if
rank(A) = n, and is (not strictly) convex if rank(A4) < n.

g) What were your thoughts on this type of activity, where we give you a proof and ask you ques-
tions about it?
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Activity 3: Gradient Descent Gone Wrong
Suppose 7 € R?. Let

(@) =2} + |2 = 23 + 2F + 23

To minimize f(Z), we use gradient descent, with a learning rate of & =

NI

a) Open Desmos and plot the related function g(x) = 23 + 22. Even though this is a scalar-to-
scalar function, and f is vector-to-scalar, they are related. What do you notice about the shape
of the graph?

b) Find V f(Z), the gradient of f(Z).
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)
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(t)

d) For any initial guess #(*), what does xy’ converge to as t — 00?

e) Suppose 7°) = {_01}

i) Find (Y.

ii) Will gradient descent eventually converge, given this initial guess and learning rate?

f) Suppose ) = [(1)]

i) Find z(V).

ii) Will gradient descent eventually converge, given this initial guess and learning rate?




