
Midterm 1 Solutions
EECS 245, Winter 2026 at the University of Michigan

Name:

uniqname:

UMID:

Room: 1670 BBB (big room) 1690 BBB Other

Instructions

• This exam consists of 7 problems, worth a total of 100 points, spread across 12 pages
(6 sheets of paper).

• You have 120 minutes to complete this exam, unless you have extended-time accom-
modations through SSD.

• Write your uniqname in the top right corner of each page.

• For free response problems, you must show all of your work, and circle your final
answer. We will not grade work that appears elsewhere, and you may lose points if
your work is not shown.

• For multiple choice problems, completely fill in bubbles and square boxes; if we cannot
tell which option(s) you selected, you may lose points.

A bubble means that you should only select one choice.
A square box means you should select all that apply.

• You may refer to one double-sided 8.5x11” handwritten notes sheet. Other than that,
you may not refer to any other resources or technology during the exam (no phones,
watches, or calculators).

You are to abide by the University of Michigan/Engineering Honor Code. To receive a grade,
please sign below to signify that you have kept the Honor Code pledge.

I have neither given nor received aid on this exam, nor have I concealed any violations of the Honor Code.
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Tip: Skim through the entire exam before starting to work on it.

Problem 1 (16 pts)
Consider a dataset of n values, y1, y2, . . . , yn, with:

• a mean of ȳ = 18

• a median of 15

• a standard deviation of σy = 7

a) (4 pts) In the space provided, sketch the graph of Rsq(w), the mean squared error of a constant
prediction w on the dataset. For full credit:

• The shape of the graph must be correct.

• You must clearly label the coordinates of the minimum point on the graph.
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Solution:

Recall that

Rsq(w) =
1

n

n

∑
i=1

(yi −w)2

is a parabola, minimized at w = ȳ. When w = ȳ,

Rsq(w) =
1

n

n

∑
i=1

(yi − ȳ)2 = σ2
y

is the variance of the dataset. Here, the mean is 18 and the variance is 49, so the minimum
point is at (18, 49).

b) (6 pts) Which of the following quantities is guaranteed to be equal to 0? Select all that apply.
1

n

n

∑
i=1

(yi − 15)

1

n

n

∑
i=1

(yi − 18)

1

n

n

∑
i=1

(yi − 15)2

1

n

n

∑
i=1

(yi − 18)2

1

n

n

∑
i=1

(yi − 15)2 − 72

1

n

n

∑
i=1

(yi − 18)2 − 72
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Solution:
There are two key ideas at play here:

• The mean is the unique point in the dataset such that the sum of deviations from
the mean is 0. In other words,

n

∑
i=1

(yi − ȳ) =
n

∑
i=1

yi − nȳ = nȳ− nȳ = 0

• The variance of a dataset is the average of the squared deviations from the mean.
In other words,

σ2
y =

1

n

n

∑
i=1

(yi − ȳ)2

Equivalently, this is the value of Rsq(w) when w = ȳ.
With this in mind, let’s look at the options:

1. (False)
1

n

n

∑
i=1

(yi − 15): This is the average of the deviations from the median, which

is not 0. This is only true for the mean.

2. (True)
1

n

n

∑
i=1

(yi − 18): This is the average of the deviations from the mean, which is

0. This is only true for the mean.

3. (False)
1

n

n

∑
i=1

(yi − 15)2: This is the function Rsq(w) when w = 15. As we see in the

solution to part a), this is not 0.

4. (False)
1

n

n

∑
i=1

(yi − 18)2: This is the function Rsq(w) when w = 18, i.e. it is the

variance of the dataset. As we see in the solution to part a), this is also not zero —
here, it is σ2

y = 72 = 49. One point of confusion may be that w = ȳ is the point
at which Rsq(w) is minimized and Rsq(w) has a derivative of 0, but Rsq(ȳ) ̸= 0 in
general.

5. (False)
1

n

n

∑
i=1

(yi − 15)2 − 72: This would be true if the 15 were replaced with the

mean, 18, but it is not.

6. (True)
1

n

n

∑
i=1

(yi − 18)2 − 72: This is the variance of the dataset minus the variance of

the dataset, which indeed is 0.
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c) (6 pts) Recall that Rabs(w) is the mean absolute error of a constant prediction w on the dataset.
A snippet of the graph of Rabs(w) is shown below.

For clarity, the circles at (15, 4), (18, 5), and (22, 7) indicate the points at which the slope of Rabs(w)
changes.

Given that there are n = 72 values in the dataset, how many values in the dataset are equal to 18?
Show your work and circle your final answer, which should be an integer with no variables.
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Solution: The number of values in the dataset that are equal to 18 is 6.
Recall, the slope of Rabs(w) at any w that is not a data point is:

d
dw

Rabs(w) =
# left of w−# right of w

n

There are two line segments of interest here: the one between w = 15 and w = 18, and the
one between w = 18 and w = 22. We have two ways of computing the slope of each one: by
using slope = change in y

change in x and by using the formula above. We’ll use both formulas on each
line segment.

• Between w = 15 and w = 18:

– Method 1: Using slope = change in y
change in x , the graph rises from (15, 4) to (18, 5), which

gives a slope of

s1 =
5− 4

18− 15
=

1

3

– Method 2: Using the formula for the slope of Rabs(w), let l be the number of values
in the dataset less than or equal to 15. Then, the slope in this interval is

s1 =
l− (72− l)

72
=

2l− 72

72

At this point, we have enough information to solve for l:

2l− 72

72
=

1

3
=⇒ l = 48

• Between w = 18 and w = 22:

– Method 1:
s2 =

7− 5

22− 18
=

2

4
=

1

2

– Method 2: Let k be the number of values in the dataset equal to 18. Ultimately,
this is what we’re trying to find. Then, the number of values in the dataset less
than or equal to 18 is l+ k. In this interval, the slope is

s2 =
(l+ k)− (72− (l+ k))

72
=

2(l+ k)− 72

72

So, we need to solve for k in

2(l+ k)− 72

72

But, we know that l = 48, so

2(48+ k)− 72

72
=

1

2
=⇒ 96+ 2k− 72 = 36 =⇒ 2k = 12 =⇒ k = 6

Therefore, there are 6 values in the dataset that are equal to 18.
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Problem 2 (14 pts)
Suppose we’d like to fit a simple linear regression model to a dataset of n points,
(x1, y1), (x2, y2), . . . , (xn, yn), by minimizing mean squared error.

Suppose w∗
0 and w∗

1 are the optimal intercept and slope parameters, respectively, and let

M =
1

n

n

∑
i=1

(yi − (w∗
0 +w∗

1xi))
2

Finally, let σx and σy be the standard deviations of the x-values and y-values in the dataset, re-
spectively. Assume that σx > 0 and σy > 0.

a) (5 pts) Which of the following is the relationship between M and σ2
y? Select an answer and

provide a brief explanation in the box provided.

M ≤ σ2
y M = σ2

y M ≥ σ2
y Impossible to tell

Solution: M is the mean squared error of the best simple linear regression model for
the dataset; it minimizes the mean squared error among all models of the form

h(xi) = w0 +w1xi

The constant model, h(xi) = w, can be thought of as a more restrictive version of the
simple linear regression model, in that it has an intercept w and slope of 0. So, the best
simple linear regression model is at least as good as the best constant model, when both
are measured by mean squared error. If the x and y values in the dataset have no linear as-
sociation, meaning the correlation coefficient r is 0, then the best simple linear regression
model is the same as the best constant model; otherwise, the best simple linear regression
model is better, since it has all of the flexibility of the constant model, and more. The first
section of Chapter 2.5 discusses this idea further.

b) (5 pts) Suppose that M = 0. What is the value of r, the correlation coefficient between the x-
values and y-values in the dataset? Circle your final answer and provide a brief explanation.
If there are multiple possible values, state them all.

Solution: r = 1 or r = −1.
The only case in which M = 0 is when the best simple linear regression model makes
0 errors, i.e. it passes through every point in the dataset. This happens when the x and
y values in the dataset have a perfect linear association, meaning r = 1 (positive linear
association) or r = −1 (negative linear association).

c) (2 pts) True or False: It is possible for there to be multiple pairs of (intercept, slope) with a
mean squared error of M .

True False
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Solution: The values of w∗
0 and w∗

1 are unique. We’ve seen several formulas for them in
the notes; they are the unique minimizers of

Rsq(w0,w1) =
1

n

n

∑
i=1

(yi − (w0 +w1xi))
2

d) (2 pts) True or False: It is possible for there to be multiple pairs of (intercept, slope) with a
mean squared error of M + 1.

True False

Solution: The values of w0 and w1 that minimize Rsq(w0,w1) are unique, but we’re not
discussing the minimizers here, so that fact is irrelevant.

Instead, it’s asking whether it’s possible for there to be multiple pairs of (w0,w1) with
a mean squared error of something bigger than M . The +1 is not important; we could
have stated +17 or +3π2 and the question would be the same.

Recall from Chapter 2.3 that the graph of Rsq(w0,w1) looks like a bowl in R3. While
there’s only one point at which the bowl is minimized, for any height (z-value) greater
than M , there are infinitely many pairs of (w0,w1) that give that height. To see this,
imagine slicing the bowl with the plane z = M + 1. This slice is an ellipse (stretched
circle), upon which infinitely many combinations of (w0,w1) lie.

So, yes, it is possible for there to be multiple pairs of (w0,w1) with a mean squared error
of M + 1 — in fact, that’s guaranteed.
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Problem 3 (12 pts)
Consider the following two planes, P1 and P2, in R3.

• P1 is the plane spanned by the vectors

32
0

 and

 6
−4
−3

.

• P2 is the plane defined by the equation 5x+ 3y− z = 0.

a) (6 pts) Find the equation of P1 in standard form, i.e. ax+ by + cz + d = 0. Show your work
and circle your final answer.

Solution: 2x− 3y+ 8z = 0.

As discussed in Chapter 4.4, the solution is to take the cross product of the two vectors

used to span the plane; this will give us a vector

ab
c

 that is orthogonal to both vectors,

and therefore both will satisfy ax+ by + cz + d = 0. We know d = 0 since the span of a
set of vectors must contain the origin.32

0

×

 6
−4
−3

 =

2 · (−3)− 0 · (−4)
0 · 6− 3 · (−3)
3 · (−4)− 2 · 6

 =

 −6
9

−24


So, the equation of P1 is −6x+ 9y − 24z = 0, or simplified, 2x− 3y+ 8z = 0 . To verify,
we should plug in both vectors to make sure they satisfy the equation:

2(3)− 3(2) + 8(0) = 6− 6+ 0 = 0, 2(6)− 3(−4) + 8(−3) = 12+ 12− 24 = 0

b) (6 pts) Planes P1 and P2 intersect at a line. Find the equation of this line in parametric form.
Show your work and circle your final answer. Hint: This can be done without knowing the answer
to the previous part.
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Solution:

L = t

 1
−2
−1

 , t ∈ R

(where the direction vector could be scaled by any non-zero scalar)

There are a few possible techniques here.

1. We can find the intersection of the two planes by solving the system of equations:

5x+ 3y− z = 0

2x− 3y+ 8z = 0

Adding both equations gives

7x+ 7z = 0 =⇒ z = −x

We know that the system will have infinitely many solutions, so we can let our
“parameter” be x. So far, we know two of the three components of the line: x is the
free variable, and z = −x. Finally, let’s solve for y in terms of x.

5x+ 3y+ x = 0 =⇒ 6x+ 3y = 0 =⇒ y = −2x

Therefore, the parametric equation of the line is

L =

 x
−2x
−x

 = x

 1
−2
−1

 , x ∈ R

2. Another solution is to recognize that any point on the first plane can be written as
a linear combination of the two vectors that span the plane, i.e.

s

32
0

+ t

 6
−4
−3

 =

3s+ 6t
2s− 4t
−3t


Any vector on the first plane can be written in the form above. For a vector to be in
both planes (i.e. in the intersection), it must be able to be written in the form above
and satisfy the equation of the second plane, 5x+ 3y− z = 0.

5(3s+ 6t) + 3(2s− 4t)− (−3t) = 0

15s+ 30t+ 6s− 12t+ 3t = 0

21s+ 21t = 0

t = −s

11



So, as long as we pick s and t such that t = −s, the resulting vector,

3s+ 6t
2s− 4t
−3t

, will

be in both planes. There are infinitely many pairs of such s and t – 1 and −1, 2 and
−2, etc. – and these fill out the line of intersection. To find one of them, let s = 1
and t = −1: 3(1) + 6(−1)

2(1)− 4(−1)
−3(−1)

 =

3− 6
2+ 4
3

 =

−3
6
3


Therefore, the parametric equation of the line is

L = t

−3
6
3

 , t ∈ R

which is equivalent to

L = t

 1
−2
−1

 , t ∈ R

This is the same line we found earlier, just with a scaled direction vector, which
doesn’t change the line.

3. A final solution is to (1) find a vector that is perpendicular to each plane (i.e. a
normal vector), and (2) take the cross product of those two vectors. This will give
us a vector that is in both planes, and therefore spans the intersecting line, which
we know must also pass through the origin.

 5
3
−1

×

 2
−3
8

 =

3 · 8− (−1) · (−3)
(−1) · 2− 5 · 8
5 · (−3)− 3 · 2

 =

 21
−42
−21

 = 21

 1
−2
−1



So, once again, we find that

 1
−2
−1

 is a direction vector for the line of intersection.
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Problem 4 (12 pts)

Suppose u⃗ =

10
0

 and u⃗+ v⃗+ w⃗ =

40
0

. Assume that none of u⃗, v⃗, or w⃗ are the zero vector, 0⃗.

For each statement below, identify whether it is impossible, possible, or guaranteed, and provide
a brief explanation in the box provided.

a) (4 pts) u⃗ and v⃗ are orthogonal.
Impossible Possible Guaranteed

Solution: This is possible.

There is nothing stopping u⃗ and v⃗ from being orthogonal. For example, let v⃗ =

01
0

.

Then, u⃗ · v⃗ = 0 · 0+ 0 · 1+ 0 · 0 = 0, so u⃗ and v⃗ are orthogonal, and we can still find a w⃗

such that u⃗+ v⃗+ w⃗ =

40
0

. For example, let w⃗ =

40
0

− u⃗− v⃗ =

 3
−1
0

.

However, it’s not guaranteed: v⃗ =

20
0

 and w⃗ =

10
0

 satisfy u⃗+ v⃗+ w⃗ =

40
0

, but u⃗ and

v⃗ are not orthogonal.
So, it is possible for u⃗ and v⃗ to be orthogonal.

b) (4 pts) The set {u⃗, v⃗, w⃗} is linearly dependent.
Impossible Possible Guaranteed
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Solution: This is guaranteed.

u⃗+ v⃗+ w⃗ =

40
0


Since u⃗ =

10
0

, we can subtract 4u⃗ from both sides to get

u⃗+ v⃗+ w⃗− 4u⃗ = w⃗− 3u⃗ =

40
0

− 4

10
0


Or, equivalently,

−3u⃗+ v⃗+ w⃗ = 0⃗

This is a non-trivial linear combination of u⃗, v⃗, and w⃗ that equals the zero vector, so the
set {u⃗, v⃗, w⃗} is linearly dependent. Equivalently, we could say w⃗ = 3u⃗− v⃗, which means
w⃗ is a linear combination of u⃗ and v⃗, which also means the set is linearly dependent.

c) (4 pts) u⃗, v⃗, and w⃗ all have the same norm (length).
Impossible Possible Guaranteed

Solution: This is impossible.
Recall that the triangle inequality states that for any two vectors v⃗ and w⃗,

∥v⃗+ w⃗∥ ≤ ∥v⃗∥+ ∥w⃗∥

We know that ∥u⃗∥ = 1, so in order for the statement to be possible, we’d need both

∥v⃗∥ = 1 and ∥w⃗∥ = 1. But, v⃗ + w⃗ =

30
0

, so ∥v⃗ + w⃗∥ =
√
32 + 02 + 02 =

√
9 = 3. In the

triangle inequality, this would mean

∥v⃗+ w⃗∥ ≤ ∥v⃗∥+ ∥w⃗∥ =⇒ 3 ≤ 2

This is a contradiction, so it is impossible for both v⃗ and w⃗ to have a norm of 1, and
therefore impossible for all three vectors to have the same norm.
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Problem 5 (12 pts)
Suppose u⃗, v⃗ ∈ Rn. Let p⃗ be the projection of u⃗ onto v⃗. Furthermore, we know that:

∥v⃗∥ = 2︸ ︷︷ ︸
length of v⃗ (not u⃗)

∥p⃗∥ = 3

a) (6 pts) Find |u⃗ · v⃗|. Show your work and circle your final answer, which should be a number
with no variables.

Solution: |u⃗ · v⃗| = 6.
Let’s start with the formula for p⃗.

p⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗ =
u⃗ · v⃗
∥v⃗∥2

v⃗

We know that ∥p⃗∥ = 3, so let’s try and find the magnitude of p⃗ in the formula above,
which will allow us to learn more about u⃗ · v⃗.

The key to remember that ∥kx∥ = |k|∥x∥ for any scalar k and vector x. The absolute value
is necessary because the scalar k could be negative, but the length of a vector is always
non-negative.

∥p⃗∥ =

∣∣∣∣ u⃗ · v⃗
∥v⃗∥2

∣∣∣∣ ∥v⃗∥ =

∣∣∣∣ u⃗ · v⃗
22

∣∣∣∣ 2 =

∣∣∣∣ u⃗ · v⃗
4

∣∣∣∣ 2 =
|u⃗ · v⃗|
2

So, we know that |u⃗·v⃗|
2 = 3, which means that |u⃗ · v⃗| = 6 .

b) (6 pts) For each pair of vectors, determine whether they are orthogonal, linearly dependent, or
neither. Make sure to select one bubble per row.

pair of vectors orthogonal linearly dependent neither
(i) u⃗ and u⃗− p⃗

(ii) u⃗ and v⃗− p⃗

(iii) v⃗ and u⃗− p⃗

(iv) v⃗ and v⃗− p⃗

(v) p⃗ and u⃗− p⃗

(vi) p⃗ and v⃗− p⃗
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Solution: The key fact about orthogonality when it comes to projections is that the
error vector — here, e⃗ = u⃗− p⃗ — is orthogonal to the vector we’re projecting onto, v⃗.

This means that v⃗ and u⃗− p⃗ are orthogonal (iii). But, p⃗ is a scalar multiple of v⃗, so p⃗ and
u⃗− p⃗ are also orthogonal (v).

Remember that p⃗ is a scalar multiple of v⃗, so v⃗ − p⃗ is a scalar multiple of v⃗ too. So, v⃗ and
v⃗− p⃗ are linearly dependent (iv), as are p⃗ and v⃗− p⃗ (vi).

Now, we need to address (i) and (ii), which ask about u⃗’s relation to u⃗ − p⃗ and v⃗ − p⃗,
respectively. u⃗− p⃗ is the error vector of the projection, which in general is orthogonal to
v⃗ and neither orthogonal nor linearly dependent with u⃗.

The only possible “edge case” here is when u⃗ and v⃗ are orthogonal, in which case p⃗ =
u⃗·v⃗
v⃗·v⃗ v⃗ = 0

v⃗·v⃗ v⃗ = 0⃗, which would mean that u⃗ and v⃗ − p⃗ are orthogonal and u⃗ and u⃗− p⃗

are the same vector and thus linearly dependent. However, we know that p⃗ ̸= 0⃗ since
∥p⃗∥ = 3 > 0. So, this edge case doesn’t apply to this problem, and therefore u⃗ and u⃗− p⃗
are neither orthogonal nor linearly dependent (i), and same with u⃗ and v⃗− p⃗ (ii).
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Problem 6 (14 pts)
Suppose x⃗1, x⃗2, x⃗3, x⃗4, x⃗5, x⃗6 are 6 vectors in R9 such that

S = span ({x⃗1, x⃗2, x⃗3, x⃗4, x⃗5, x⃗6})

is a 4-dimensional subspace of R9.

a) (2 pts) True or False: The set {x⃗1, x⃗2, x⃗3, x⃗4, x⃗5, x⃗6} is linearly independent.
True False

Solution: This is false.

If these vectors were linearly independent, they would span a 6-dimensional subspace
of R9; since they only span a 4-dimensional subspace, they must be linearly dependent,
and two of them are “redundant”.

b) (4 pts) Consider the statement:

“There exists a vector b⃗ ∈ R9 such that the number of ways to write b⃗ as a linear combination
of x⃗1, . . . , x⃗6 is .”

In each part below, a possible way to fill in the blank is given. Determine whether the statement
that results from filling in the blank is True or False.

(i) zero
True False

(ii) exactly one
True False

(iii) exactly two
True False

(iv) infinite
True False
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Solution:
• (True) zero ways: S, the set of all linear combinations of x⃗1, . . . , x⃗6, is a 4-

dimensional subspace of R9. Since S isn’t all of R9, there are plenty of vectors
b⃗ ∈ R9 that are not in S, and therefore can’t be written as a linear combination of
x⃗1, . . . , x⃗6. So, it’s true that there are some b⃗’s such that there are zero ways to write
b⃗ as a linear combination of x⃗1, . . . , x⃗6.

• (False) exactly one way: Linear combinations are only unique if the spanning vec-
tors are linearly independent. Since x⃗1, . . . , x⃗6 are linearly dependent, there is a
non-trivial linear combination of them that equals the zero vector, which could be
added to any other existing linear combination that sums to b⃗ to “invent” a new,
different-looking linear combination that sums to b⃗. So, it’s false that there is ex-
actly one way to write b⃗ as a linear combination of x⃗1, . . . , x⃗6 — if there is one way,
there are infinitely many.

• (False) exactly two ways: Same logic as above. If this thinking is a bit confusing,
see the solution to part c).

• (True) infinite ways: For any vector b⃗ ∈ S, there are infinitely many ways to write
b⃗ as a linear combination of x⃗1, . . . , x⃗6.

c) (4 pts) Suppose b⃗ is some vector in S such that both of the following equations are true:

b⃗ = 4x⃗1 − 2x⃗2 + 6x⃗3

b⃗ = 3x⃗1 + 3x⃗3 − x⃗5

State one other linear combination of x⃗1, . . . , x⃗6 that is equal to b⃗. Fill in each box with a num-
ber with no variables.

b⃗ = 7/2 x⃗1+ -1 x⃗2+ 9/2 x⃗3+ 0 x⃗4+ -1/2 x⃗5+ 0 x⃗6
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Solution:
Arguably, answering part c) may have helped clarify the answer to part b).
Let’s try adding the two representation of b⃗ together.

b⃗ = 4x⃗1 − 2x⃗2 + 6x⃗3

b⃗ = 3x⃗1 + 3x⃗3 − x⃗5

=⇒ 2⃗b = 7x⃗1 − 2x⃗2 + 9x⃗3 − x⃗5

Dividing both sides by 2 gives us

b⃗ =
7

2
x⃗1 − x⃗2 +

9

2
x⃗3 −

1

2
x⃗5

This is not the only possible answer, but it’s probably the easiest one. For example,
you could repeat this process with one of the original two b⃗’s along with the new
representation of b⃗ to get another valid representation of b⃗.

You also could have subtracted the two representations of b⃗ to get a linear combination of
x⃗1, . . . , x⃗6 that equals the zero vector, which could be added to any other existing linear
combination that sums to b⃗ to “invent” a new, different-looking linear combination that
sums to b⃗ (as we said in the solution to part b)). If you did this, you’d find that

0⃗ = x⃗1 − 2x⃗2 + 3x⃗3 + x⃗5

This must mean that

b⃗+ 0⃗ = (4x⃗1 − 2x⃗2 + 6x⃗3) + (x⃗1 − 2x⃗2 + 3x⃗3 + x⃗5) = 5x⃗1 − 4x⃗2 + 9x⃗3 + x⃗5

is another way to represent b⃗ as a linear combination of x⃗1, . . . , x⃗6,
and so is

b⃗+ 245(⃗0) = (4x⃗1 − 2x⃗2 + 6x⃗3) + 245(x⃗1 − 2x⃗2 + 3x⃗3 + x⃗5)

(for instance).

d) (4 pts) Let T = span({x⃗1, x⃗2, x⃗3}) and U = span({x⃗4, x⃗5, x⃗6}). Suppose W is the intersection
of T and U , i.e. W = T ∩U . W is also a subspace of R9.

What are the smallest and largest possible values of dim(W ), the dimension of W ? Give your
answers as integers.

smallest possible value = 0 largest possible value = 2
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Solution: T and U are each individually at most 3-dimensional, since they are each
spanned by 3 vectors. So, the intersection W must be at most 3-dimensional. This means
the possible dimensions to consider are 3, 2, 1, or 0. Let’s reason about them, starting
with 3.

To give examples, we’ll use the standard basis vectors e⃗1, e⃗2, . . . , e⃗9 of R9. In R2, e⃗1 =
[
1
0

]
and e⃗2 =

[
0
1

]
, so (for instance) in R9,

e⃗5 =



0
0
0
0
1
0
0
0
0


• Could dim(W ) = 3? No. If dim(W ) = 3, it would mean that T and U are both the

same 3-dimensional subspace of R9, and intersect everywhere. But if that were the
case, then S = span({x⃗1, x⃗2, x⃗3, x⃗4, x⃗5, x⃗6}) would be a 3-dimensional subspace of
R9, which contradicts the problem statement that S is a 4-dimensional subspace of
R9. So, dim(W ) < 3, and the maximum possible value is something less than 3.

• Could dim(W ) = 2? Yes, and all smaller values are also possible. T and U could
overlap in a 2-dimensional subspace of R9, while each containing a direction that
the other doesn’t.
For example, T could be the span of {e⃗1, e⃗2, e⃗3} and U could be the span of
{e⃗2, e⃗3, e⃗4}. In this case, W would be the span of {e⃗2, e⃗3}, which is a 2-dimensional
subspace of R9.

• Could dim(W ) = 1? Yes. For example, T could be the span of {e⃗1, e⃗2} and U
could be the span of {e⃗2, e⃗3, e⃗4}. In this case, W would be the span of {e⃗2}, which
is 1-dimensional, while S would still be 4-dimensional. (In this example, we said
that T is the span of e⃗1 and e⃗2 though we defined it in the problem statement to be
the span of three vectors. No problem — just pick the third vector to be a linear
combination of e⃗1 and e⃗2. That is, x⃗1 = e⃗1, x⃗2 = e⃗2, and x⃗3 = e⃗1 + e⃗2 would work
as an example.)

• Could dim(W ) = 0? Yes. T and U could be two completely disjoint subspaces,
except for 0⃗, which is in every subspace.
For example, let x⃗1 = e⃗1, x⃗2 = e⃗2, x⃗3 = e⃗1 + e⃗2, which makes T a 2-dimensional
subspace of R9, and x⃗4 = e⃗3, x⃗5 = e⃗4, x⃗6 = e⃗3 + e⃗4, which makes U a 2-dimensional
subspace of R9. In this case, W would be the set {⃗0}, while S would still be 4-
dimensional.

So, the smallest possible value of dim(W ) is 0 , and the largest possible value is 2 .

20



uniqname:

Problem 7 (20 pts)
Suppose we’d like to find the optimal constant parameter, w∗, for the constant model h(xi) = w,
given a dataset of n points (x1, y1), (x2, y2), . . . , (xn, yn). To do so, we use the sub-squared loss
function, Lss, defined below.

Lss(yi,w) = (
√
yi −

√
w)2

This requires us to assume that all yi ≥ 0, as are all possible values of w.

a) (6 pts) Find d
dwRss(w), the derivative of average sub-squared loss (i.e. the empirical risk) with

respect to w. Show your work and circle your final answer, which should be an expression in
terms of the yi’s, n, and/or any constants. Hint: The derivative of f(x) =

√
x is d

dx
√
x = 1

2
√
x

.

Solution:
The definition of average sub-squared loss is

Rss(w) =
1

n

n

∑
i=1

Lss(yi,w) =
1

n

n

∑
i=1

(
√
yi −

√
w)2

Then,

d
dw

Rss(w) =
d

dw

(
1

n

n

∑
i=1

(
√
yi −

√
w)2

)

=
1

n

n

∑
i=1

d
dw

[
(
√
yi −

√
w)2

]
=

1

n

n

∑
i=1

2(
√
yi −

√
w) · d

dw
(
√
yi −

√
w)

=
1

n

n

∑
i=1

2(
√
yi −

√
w) ·

(
0− 1

2
√
w

)

= − 1

n

n

∑
i=1

√
yi −

√
w

√
w

b) (6 pts) Show that the value of w∗ that minimizes average sub-squared loss is

w∗ =

(
1

n

n

∑
i=1

√
yi

)2
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Solution: We’ve found that

d
dw

Rss(w) = − 1

n

n

∑
i=1

√
yi −

√
w

√
w

To find w∗, we need to set this expression equal to 0 and solve for w.

− 1

n

n

∑
i=1

√
yi −

√
w

√
w

= 0

n

∑
i=1

√
yi −

√
w

√
w

= 0

n

∑
i=1

(
√
yi −

√
w) = 0

n

∑
i=1

√
yi − n

√
w = 0

√
w =

1

n

n

∑
i=1

√
yi

w =

(
1

n

n

∑
i=1

√
yi

)2

So, the value of w∗ that minimizes average sub-squared loss is

w∗ =

(
1

n

n

∑
i=1

√
yi

)2
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c) (6 pts) Using the Cauchy-Schwarz inequality, prove that(
1

n

n

∑
i=1

√
yi

)2

≤ ȳ

where ȳ is the mean of the yi’s.

Solutions that do not use the Cauchy-Schwarz inequality will not receive credit.

Solution: The Cauchy-Schwarz inequality states that

|u⃗ · v⃗| ≤ ∥u⃗∥∥v⃗∥

for any two vectors u⃗, v⃗ ∈ Rn. The problem boils down to constructing u⃗ and v⃗ such that
the Cauchy-Schwarz inequality, for that u⃗ and v⃗, implies the inequality we’re trying to
prove.

For hints on how to proceed, let’s expand the definition of ȳ in the inequality we’re trying
to prove. (

1

n

n

∑
i=1

√
yi

)2

≤ 1

n

n

∑
i=1

yi

On the left, we have a sum of
√
yi’s, and on the right, we have a sum of yi’s. We know

that in the norm of a vector, the individual components are squared, which would allow
us to turn

√
yi into yi. So, one possible path forward is

u⃗ =


√
y1√
y2
...√
yn

 , v⃗ =


1
1
...
1


The dot product of u⃗ and v⃗ is ∑n

i=1
√
yi, which seems promising. Let’s plug u⃗ and v⃗ into

the Cauchy-Schwarz inequality and see what we get.

|u⃗ · v⃗| ≤ ∥u⃗∥∥v⃗∥

∣∣∣∣∣ n

∑
i=1

√
yi

∣∣∣∣∣ ≤
∥∥∥∥∥∥∥∥∥


√
y1√
y2
...√
yn


∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥


1
1
...
1


∥∥∥∥∥∥∥∥∥

n

∑
i=1

√
yi ≤

√
n

∑
i=1

yi
√
n
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Seems like we’re getting somewhere. Let’s square both sides.

(
n

∑
i=1

√
yi

)2

≤

(√
n

∑
i=1

yi
√
n

)2

(
n

∑
i=1

√
yi

)2

≤ n
n

∑
i=1

yi

Now, all that’s left is to divide both sides by n2.

(
n

∑
i=1

√
yi

)2

≤ n
n

∑
i=1

yi(
∑n

i=1
√
yi
)2

n2
≤ n∑n

i=1 yi
n2(

1

n

n

∑
i=1

√
yi

)2

≤ 1

n

n

∑
i=1

yi

This is exactly the inequality we’re trying to prove, so we’re done!

d) (2 pts) What is the value of w that minimizes the following function:

R(w) =
1

n

n

∑
i=1

(y4i −w4)2

Hint: This can be done without using any calculus — don’t try and take the derivative.(
1

n

n

∑
i=1

yi

)4 (
1

n

n

∑
i=1

y1/4
i

)4 (
1

n

n

∑
i=1

y4i

)1/4 (
1

n

n

∑
i=1

y1/2
i

)1/4 (
1

n

n

∑
i=1

y4i

)1/2
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Solution:
The idea here is to make a substitution that reduces the problem to one we’ve already
seen — the problem of minimizing mean squared error for the constant model.
Let zi = y4i , and let t = w4. Then,

1

n

n

∑
i=1

(zi − t)2 =
1

n

n

∑
i=1

(y4i −w4)2

What is t∗, the minimizer of 1
n ∑n

i=1(zi − t)2? That’s z̄, which is

t∗ = z̄ =
1

n

n

∑
i=1

zi =
1

n

n

∑
i=1

y4i

But, t = w4, so w = t1/4, meaning

w∗ =

(
1

n

n

∑
i=1

y4i

)1/4

Notice how this relates to parts a) and b) — those could have been solved the same way,
if you wrote

√
x as x1/2.
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Congrats on finishing Midterm 1!

Feel free to draw us a picture about EECS 245 in the box below (or use it for scratch work).
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