

Midterm 1

EECS 245, Winter 2026 at the University of Michigan

Name: _____

uniqname: _____

UMID: _____

Room: 1670 BBB (big room) 1690 BBB Other

Instructions

- This exam consists of 7 problems, worth a total of 100 points, spread across 12 pages (6 sheets of paper).
- You have 120 minutes to complete this exam, unless you have extended-time accommodations through SSD.
- Write your uniqname in the top right corner of each page.
- For free response problems, **you must show all of your work**, and **circle** your final answer. We will not grade work that appears elsewhere, and you may lose points if your work is not shown.
- For multiple choice problems, completely fill in bubbles and square boxes; if we cannot tell which option(s) you selected, you may lose points.
 - A bubble means that you should only select one choice.
 - A square box means you should select all that apply.
- You may refer to **one double-sided 8.5x11" handwritten notes sheet**. Other than that, you may not refer to any other resources or technology during the exam (no phones, watches, or calculators).

You are to abide by the University of Michigan/Engineering Honor Code. To receive a grade, please sign below to signify that you have kept the Honor Code pledge.

I have neither given nor received aid on this exam, nor have I concealed any violations of the Honor Code.

This page has been intentionally left blank.

Tip: Skim through the entire exam before starting to work on it.

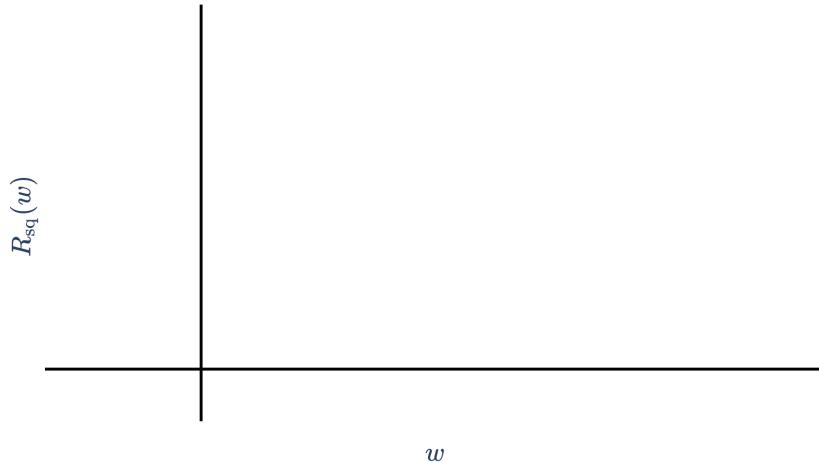
Problem 1 (16 pts)

Consider a dataset of n values, y_1, y_2, \dots, y_n , with:

- a mean of $\bar{y} = 18$
- a median of 15
- a standard deviation of $\sigma_y = 7$

a) (4 pts) In the space provided, sketch the graph of $R_{\text{sq}}(w)$, the mean squared error of a constant prediction w on the dataset. For full credit:

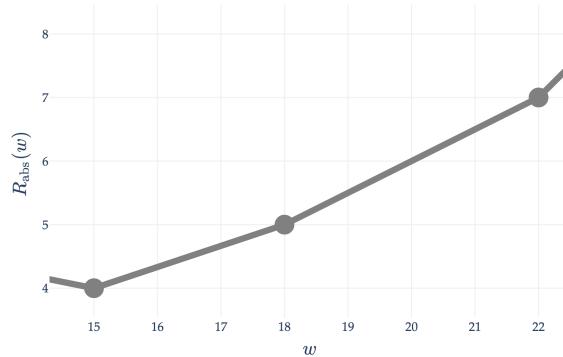
- The shape of the graph must be correct.
- You must clearly label the coordinates of the **minimum point** on the graph.



b) (6 pts) Which of the following quantities is **guaranteed** to be equal to 0? Select all that apply.

- $\frac{1}{n} \sum_{i=1}^n (y_i - 15)$
- $\frac{1}{n} \sum_{i=1}^n (y_i - 18)$
- $\frac{1}{n} \sum_{i=1}^n (y_i - 15)^2$
- $\frac{1}{n} \sum_{i=1}^n (y_i - 18)^2$
- $\frac{1}{n} \sum_{i=1}^n (y_i - 15)^2 - 7^2$
- $\frac{1}{n} \sum_{i=1}^n (y_i - 18)^2 - 7^2$

c) (6 pts) Recall that $R_{\text{abs}}(w)$ is the mean absolute error of a constant prediction w on the dataset. A snippet of the graph of $R_{\text{abs}}(w)$ is shown below.



For clarity, the circles at $(15, 4)$, $(18, 5)$, and $(22, 7)$ indicate the points at which the slope of $R_{\text{abs}}(w)$ changes.

Given that there are $n = 72$ values in the dataset, how many values in the dataset are equal to **18**? Show your work and circle your final answer, which should be an integer with no variables.

Problem 2 (14 pts)

Suppose we'd like to fit a simple linear regression model to a dataset of n points, $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, by minimizing mean squared error.

Suppose w_0^* and w_1^* are the optimal intercept and slope parameters, respectively, and let

$$M = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0^* + w_1^* x_i))^2$$

Finally, let σ_x and σ_y be the standard deviations of the x -values and y -values in the dataset, respectively. Assume that $\sigma_x > 0$ and $\sigma_y > 0$.

a) (5 pts) Which of the following is the relationship between M and σ_y^2 ? Select an answer and provide a brief explanation in the box provided.

$M \leq \sigma_y^2$ $M = \sigma_y^2$ $M \geq \sigma_y^2$ Impossible to tell

b) (5 pts) Suppose that $M = 0$. What is the value of r , the correlation coefficient between the x -values and y -values in the dataset? Circle your final answer and provide a brief explanation. If there are multiple possible values, state them all.

c) (2 pts) True or False: It is possible for there to be multiple pairs of (intercept, slope) with a mean squared error of M .

True False

d) (2 pts) True or False: It is possible for there to be multiple pairs of (intercept, slope) with a mean squared error of $M + 1$.

True False

Problem 3 (12 pts)

Consider the following two planes, P_1 and P_2 , in \mathbb{R}^3 .

- P_1 is the plane spanned by the vectors $\begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 6 \\ -4 \\ -3 \end{bmatrix}$.
- P_2 is the plane defined by the equation $5x + 3y - z = 0$.

a) (6 pts) Find the equation of P_1 in standard form, i.e. $ax + by + cz + d = 0$. Show your work and **circle** your final answer.

b) (6 pts) Planes P_1 and P_2 intersect at a line. Find the equation of this line in parametric form. Show your work and **circle** your final answer. *Hint: This can be done without knowing the answer to the previous part.*

Problem 4 (12 pts)

Suppose $\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $\vec{u} + \vec{v} + \vec{w} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}$. Assume that none of \vec{u} , \vec{v} , or \vec{w} are the zero vector, $\vec{0}$.

For each statement below, identify whether it is **impossible**, **possible**, or **guaranteed**, and provide a brief explanation in the box provided.

a) (4 pts) \vec{u} and \vec{v} are orthogonal.

Impossible Possible Guaranteed

b) (4 pts) The set $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly dependent.

Impossible Possible Guaranteed

c) (4 pts) \vec{u} , \vec{v} , and \vec{w} all have the same norm (length).

Impossible Possible Guaranteed

Problem 5 (12 pts)

Suppose $\vec{u}, \vec{v} \in \mathbb{R}^n$. Let \vec{p} be the projection of \vec{u} onto \vec{v} . Furthermore, we know that:

$$\underbrace{\|\vec{v}\| = 2}_{\text{length of } \vec{v} \text{ (not } \vec{u})} \quad \|\vec{p}\| = 3$$

a) (6 pts) Find $|\vec{u} \cdot \vec{v}|$. Show your work and circle your final answer, which should be a number with no variables.

b) (6 pts) For each pair of vectors, determine whether they are orthogonal, linearly dependent, or neither. Make sure to select **one bubble per row**.

	pair of vectors	orthogonal	linearly dependent	neither
(i)	\vec{u} and $\vec{u} - \vec{p}$	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
(ii)	\vec{u} and $\vec{v} - \vec{p}$	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
(iii)	\vec{v} and $\vec{u} - \vec{p}$	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
(iv)	\vec{v} and $\vec{v} - \vec{p}$	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
(v)	\vec{p} and $\vec{u} - \vec{p}$	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
(vi)	\vec{p} and $\vec{v} - \vec{p}$	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>

Problem 6 (14 pts)

Suppose $\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4, \vec{x}_5, \vec{x}_6$ are 6 vectors in \mathbb{R}^9 such that

$$S = \text{span}(\{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4, \vec{x}_5, \vec{x}_6\})$$

is a **4-dimensional** subspace of \mathbb{R}^9 .

a) (2 pts) True or False: The set $\{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4, \vec{x}_5, \vec{x}_6\}$ is linearly independent.
 True False

b) (4 pts) Consider the statement:

“There exists a vector $\vec{b} \in \mathbb{R}^9$ such that the number of ways to write \vec{b} as a linear combination of $\vec{x}_1, \dots, \vec{x}_6$ is ____.”

In each part below, a possible way to fill in the blank is given. Determine whether the statement that results from filling in the blank is **True** or **False**.

- (i) zero
 True False
- (ii) exactly one
 True False
- (iii) exactly two
 True False
- (iv) infinite
 True False

c) (4 pts) Suppose \vec{b} is some vector in S such that both of the following equations are true:

$$\vec{b} = 4\vec{x}_1 - 2\vec{x}_2 + 6\vec{x}_3$$

$$\vec{b} = 3\vec{x}_1 + 3\vec{x}_3 - \vec{x}_5$$

State **one** other linear combination of $\vec{x}_1, \dots, \vec{x}_6$ that is equal to \vec{b} . Fill in each box with a number with no variables.

$$\vec{b} = \boxed{} \vec{x}_1 + \boxed{} \vec{x}_2 + \boxed{} \vec{x}_3 + \boxed{} \vec{x}_4 + \boxed{} \vec{x}_5 + \boxed{} \vec{x}_6$$

d) (4 pts) Let $T = \text{span}(\{\vec{x}_1, \vec{x}_2, \vec{x}_3\})$ and $U = \text{span}(\{\vec{x}_4, \vec{x}_5, \vec{x}_6\})$. Suppose W is the **intersection** of T and U , i.e. $W = T \cap U$. W is also a subspace of \mathbb{R}^9 .

What are the smallest and largest possible values of $\dim(W)$, the dimension of W ? Give your answers as integers.

smallest possible value =

largest possible value =

Problem 7 (20 pts)

Suppose we'd like to find the optimal constant parameter, w^* , for the constant model $h(x_i) = w$, given a dataset of n points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$. To do so, we use the **sub-squared** loss function, L_{ss} , defined below.

$$L_{ss}(y_i, w) = (\sqrt{y_i} - \sqrt{w})^2$$

This requires us to assume that all $y_i \geq 0$, as are all possible values of w .

a) (6 pts) Find $\frac{d}{dw} R_{ss}(w)$, the derivative of **average** sub-squared loss (i.e. the empirical risk) with respect to w . Show your work and **circle** your final answer, which should be an expression in terms of the y_i 's, n , and/or any constants. *Hint: The derivative of $f(x) = \sqrt{x}$ is $\frac{d}{dx} \sqrt{x} = \frac{1}{2\sqrt{x}}$.*

b) (6 pts) Show that the value of w^* that minimizes average sub-squared loss is

$$w^* = \left(\frac{1}{n} \sum_{i=1}^n \sqrt{y_i} \right)^2$$

unqname: _____

c) (6 pts) Using the Cauchy-Schwarz inequality, prove that

$$\left(\frac{1}{n} \sum_{i=1}^n \sqrt{y_i} \right)^2 \leq \bar{y}$$

where \bar{y} is the mean of the y_i 's.

Solutions that do not use the Cauchy-Schwarz inequality will not receive credit.

d) (2 pts) What is the value of w that minimizes the following function:

$$R(w) = \frac{1}{n} \sum_{i=1}^n (y_i^4 - w^4)^2$$

Hint: This can be done without using any calculus — don't try and take the derivative.

$\left(\frac{1}{n} \sum_{i=1}^n y_i \right)^4$ $\left(\frac{1}{n} \sum_{i=1}^n y_i^{1/4} \right)^4$ $\left(\frac{1}{n} \sum_{i=1}^n y_i^4 \right)^{1/4}$ $\left(\frac{1}{n} \sum_{i=1}^n y_i^{1/2} \right)^{1/4}$ $\left(\frac{1}{n} \sum_{i=1}^n y_i^4 \right)^{1/2}$

Congrats on finishing Midterm 1!

Feel free to draw us a picture about EECS 245 in the box below (or use it for scratch work).

