Homework 7: Projections; Regression with Linear Algebra
EECS 245, Fall 2025 at the University of Michigan
due Friday, October 24th, 2025 at 11:59PM Ann Arbor Time

Write your solutions to the following problems by either typing them up or handwriting
them on another piece of paper. Homeworks are due to Gradescope by 11:59PM on the due
date. See the syllabus for details on the slip day policy.

Homework will be evaluated not only on the correctness of your answers, but on your
ability to present your ideas clearly and logically. You should always explain and justify
your conclusions, using sound reasoning. Your goal should be to convince the reader of
your assertions. If a question does not require explanation, it will be explicitly stated.

Before proceeding, make sure you're familiar with the collaboration policy.

Total Points: 35 + 13 + 14 + 27 =89

Note: This homework is a bit different from previous homeworks in that it only has 4 problems,
but each one is rather involved and requires you to read a fair bit. Tip: Do the problems in order,
since they build upon each other.

Problem 1: Projecting onto the Column Space (35 pts)

The big idea in Chapter 2.10, which we will also revisit in Chapter 3.1, is that of projecting a vector
y € R™ onto the column space of an n x d matrix X. That is, unlike in previous homeworks, we
don’t assume ¥ is a linear combination of X’s columns, and instead aim to find the vector in
colsp(X) that is closest to .

As we will show in Chapter 2.10, if X’s columns are the vectors 71 72 #d) then the pro-
jection of i onto colsp(X) is the vector

7= X" = wizV 4+ wid® + . 4 wid?, where @ = (XTX) X7y

if XT X is invertible
The vector w* minimizes the norm of the error vector, € = i — p, and as we will see in coming

problems and homeworks, it contains optimal model parameters for linear regression, when we
fill our X (carefully) with our input variables and i with our output variables.

Taking another look at the formula p' = X*, we see that it’s equivalent to

P=Xu*=X(XTX)"'XTj= Py

where P = X (XTX)~1X7 is called the projection matrix. Multiplying Py is equivalent to pro-
jecting ¢ onto colsp(X). In this problem, you'll explore properties of P and w*.


https://eecs245.org/syllabus/#homeworks
https://eecs245.org/syllabus/#homeworks
https://notes.eecs245.org/vectors-and-matrices/projection-2
https://notes.eecs245.org/vectors-and-matrices/projection-2

a) (4 pts) In this part only, suppose X is an n x 1 matrix, i.e. it is a vector. Then,
(i) What is the value of w*, and how does it relate to what we learned in Chapter 2.3?

(ii) What is the value of the matrix P, and how does it relate to what we learned in Homework
5, Problem 4?

b) (4 pts) Show that P is both symmetric (meaning that PT = P) and idempotent (meaning that
P? = P). Then, explain in English how P’s idempotence relates to the linear transformation of
projecting % onto colsp(X).

¢) (2 pts) Recall that X is an n x d matrix (meaning it’s not necessarily square), which makes
P=X(XTX)"'XT an n x n matrix.

Fill in the blanks: X7 X is invertible if and only if X’s columns are ____.

d) (2 pts) In the rare case that X is an n x n square matrix, and rank(X) = n, what is P? What
does this say about the relationship between ¥, p, and colsp (X )?

Hint: Use the fact that (AB)~! = B~1A~1,

e) (8 pts) In (i) and (ii), find w*, p, and € = y — p, and verify that € is orthogonal to colsp(X) by
showing that it is orthogonal to each of X’s columns.

2 1 p
G X=1{0 -3, 7=13
0 0] 4]
117 2]
G X= |1 —1|, 7= |3
1 0] 4]

(iif) In only one of the subparts above, it is true that the sum of the components of € is 0.
Which one, and why? This is a hugely important result, and one that will 100% appear
on Midterm 2. Hint: The answer is not that i/ is in colsp(X); in both parts, it is not.

1 1 3
. o 2 0. 1

f) (2 pts) What linear combination of 1 and nE closest to 9 ?
0 -3 4

g) (3 pts) Find the point on the plane x — y — 2z = 0 that is closest to the point (5, 0, 3).

Hint: Start by thinking of this as a projection problem. What are X and y?


https://notes.eecs245.org/vectors-and-matrices/projection-1
https://eecs245.org/resources/homeworks/hw05/hw05.pdf#page=6
https://eecs245.org/resources/homeworks/hw05/hw05.pdf#page=6

h) (6 pts) Consider the matrix

3 6 6
A_[488]

(i) How many vectors 1 are there that minimize || — Aw||*? 0, 1, finitely many, or infinitely
many?

(ii) Find the matrix P. that projects vectors in IR? onto the column space of A. Hint: The
formula for P will fail here, since AT A will not be invertible. Start by explaining why A™ A is not
invertible. Then, look at Homework 5 for inspiration.

(iii) Find the matrix P, that projects vectors in R? onto the row space of A.

(iv) Find the product P, AP, and explain the result.

i) (4 pts) Suppose that @ is an n x d matrix whose columns are orthonormal, meaning that its
columns are orthogonal to each other and have length 1. Note that we are not assuming that
()’s rows are orthonormal too, meaning that () is not necessarily an orthogonal matrix using
the definition from Homework 5 or Chapter 2.9.

The fact that @’s columns are orthonormal greatly simplifies the formulas involved in project-
ing ¢ onto colsp(Q).

(i) What is the value of w*?
(ii) What is the value of p?

(iii) If Q’s rows were orthonormal too, how would the answers to (i) and (ii) simply further,
and why?



Problem 2: Same, but Different (13 pts)

In Chapter 1.4, we were introduced to one of many formulas for the optimal slope, w}, and optimal
intercept, wg, for the simple linear regression model h(z;) = wo + wix; when using squared loss:
9y

w] =r— wy =Y — Wi
Oz

The end goal of Chapter 2 has been to give us the tools to revisit the simple linear regression model
in terms of linear algebra, so that we can extend our model to allow for multiple input variables.
As we will see in Chapter 3.1 and in Lecture 15, the solution is to define the n x 2 “design matrix”
X and observation vector i € R™ as follows:

1 x Y1

1 @9 Y2
X = s U=

1 =z, Yn

Then, leveraging the results from Problem 1 of this homework (and in Chapter 2.10), we can

express the optimal parameter vector w* as w* = (X7 X) 1 X7y = BQ] . Optimal predictions
1

come from multiplying the design matrix by the optimal parameter vector, i.e. Xu*.

It’s not immediately obvious why the components of «* should have anything to do with the

correlation, means of = and y, and standard deviations of = and y. In this problem, we will prove
that both of these formulations are equivalent, for any dataset (z1,y1), (z2,y2), -, (T, Yn)-

a) (5 pts) Express the matrix (X7 X)~! using constants and /or summations involving z; and/or
Yi-

b) (3 pts) Prove that

2 -2 -
(XTx)1 = 1 [am—I—x z}

2 __

Hint: Start by proving Y 1" 2? = no? + nz?.

o) (5 pts) Finally, prove that
L [g—rZz
(XT X)A X7 [Z/ Tagx }

Hint: Start by proving that Y ;' | x;y; = nro,oy + nZjy.

Ty

Note that the second component of the vector above is w] = r * and the first component of the
vector above is wj = § — r2“Z = § — wiT, as we first saw in Chapter 1.4! Beautiful.


https://notes.eecs245.org/supervised-learning/simple-linear-regression/

Problem 3: Billy the Waiter (14 pts)

This problem involves writing code and submitting it to the Gradescope autograder. The goal of
this problem is to give you a taste of how linear algebra can be used to implement linear regression
in code, and show you how to build models that involve multiple features (including categorical
variables).

There are two ways to access the supplemental Jupyter Notebook:

¢ Option 1: Click here to open hw07 . ipynb on DataHub. Before doing so, read the instructions
on the Tech Support page on how to use the DataHub.

* Option 2: Set up a Jupyter Notebook environment locally, use git to clone our course repos-
itory, and open homeworks/hw07/hw07.ipynb. For instructions on how to do this, see the
Tech Support page of the course website.

This problem is entirely autograded; to receive credit for Problem 3 of this homework, you'll
need to submit your completed notebook to the autograder on Gradescope. Your submission
time for Homework 7 is the latter of your PDF and code submission times.


https://datahub.eecs245.org/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Feecs245%2Ffa25&urlpath=tree%2Ffa25%2Fhomeworks%2Fhw07%2Fhw07.ipynb&branch=main
https://eecs245.org/tech-support/#option-1-using-the-eecs-245-datahub
https://eecs245.org/tech-support

Problem 4: Orthogonalization (27 pts)

Recall, a set of vectors g1, ¢2, . . . , gz € R™ are orthonormal if they are pairwise orthogonal, meaning
¢i - ¢; = 0 for all i # j, and each vector is a unit vector, meaning ||j|| = 1 for all 7.

In this problem, we’ll discover how to turn a linearly independent set of vectors into an or-
thonormal set of vectors with the same span, i.e. how to “orthogonalize” a set of vectors.

U1, 02,...,0d — q1,42,---,49d
linearly independent set of vectors orthonormal set of vectors with the same span

Orthonormal vectors (and matrices containing them) are convenient to work with. For example,
if s columns are orthonormal, then Q7' Q, the matrix containing the dot products of the columns
of Q, is the identity matrix.

The algorithm that produces this orthonomal set of vectors is called the Gram-Schmidt process.
It exploits the fact that when you project i onto Z, the error vector € = y — p'is orthogonal to
Z. Before proceeding, revisit the section in Chapter 2.3 titled “Orthogonal Decomposition” for a
useful visualization.

To illustrate how the algorithm works, let’s use as an example the vectors

1 1
o= |—1|, = |0], #=|1
1 2

These are three linearly independent vectors in R?, though they are not orthogonal. These vectors
span some subspace S. Our goal is to find an orthonormal set of vectors that spans the same S.
(In this case, S is all of R3, but in general this process works even if d < n.)

<y
8]y

Z.

In what follows, let proj (%) be the projection of i onto Z, i.e. proj.(y) =

-z

8|

e Jteration 1: Set (jl = 7.

In the first iteration, we simply take the first vector #; and copy it to Q1. From
now on, each new vector will be constructed to be orthogonal to all previously

constructed Q;’s.

g |4,
1]

e Iteration 2: Set (), = ¥ — proj G, (V)

is the same as the error vector from projecting @, onto ();, which we know is
orthogonal to (). Don’t believe me? Find () - (), just by using the definition of
above.


https://notes.eecs245.org/vectors-and-matrices/projection-1/#orthogonal-decomposition

N
of-|—1 )
1 1 MJ 1 [
= 0| — —1| =10 -3 -1 =
1 I L1 1 1
~~ |1
72 1 1
proj 5, (¥2)

e Iteration 3: Set (03 = 73 — proj 5, (U3) — proj 5, (73)

When constructed this way, (j’; is orthogonal to both (j 1 and ()». Think of it this
way: span({(J);,(),}) is a plane in IR3; after projecting @ onto this plane, the re-
maining part of ¥3 that is orthogonal to the plane is ng. If that doesn’t make sense,

compute Cj;; . (jl and ng . and see for yourself what we get!
1 1 1
1 i 1
1 9 1 1 9 —-1/2
Qs = |1 —1] - =1 0
2 : L 1/2
~~ |- '
U3 1 1
proj;, (v3) proj ;. (¥3)

If there were more 7;’s, we’d continue this process, each time constructing a new @ that is orthog-
onal to all previously constructed Q;’s by “subtracting off” the parts we’ve already accounted for
through the earlier Q);’s.

Now, Ql, QQ, @3 are orthogonal to one another, but they are not yet unit vectors. To make them
unit vectors, we simply need to divide each by its length.

L Q1 B {l/ﬁ-‘ S Qs - —1/v2
G=-—=—=||-1/V3]|}| B=——= 0
G0 || 13 | 1@l | | 1/v3

Now, the vectors ¢, ¢2, g3 are orthonormal to one another, and they span the same subspace S as
the vectors v, Ua, U3!



In parts a) through d), we’ll refer to the vectors v} = ,and U3 =

OO ==

~

Sl

Il
O~ = O
_ =0 O

a) (6 pts) By hand, apply the Gram-Schmidt process to the vectors ¢/, ¥, U3 to find an orthonormal
set of vectors ¢, ¢2, ¢3, and show all of your work.

Then, create the matrix Q = |¢i ¢ ¢z | and confirm that Q7 Q = I, but that QQT # I.

b) (3 pts) Suppose ¥, = . If you were to apply the Gram-Schmidt process to the vectors

W W NN

U1, Ua, U3, U4, what would the vector Q4 be? Why?

3
. R -1 . . I T,
¢) (4 pts) Consider i = |- ¥isin span({v, U2, U3}) = span({qi, &, @3 })-

-2
Find scalars a, b, and c such that ag + b + cgz = v, without solving a system of 3 equations
and 3 unknowns. Instead, use the fact that 41, ¢>, ¢3 are orthonormal.

Hint: There’s a relevant problem from Lab 4; review that, along with Chapter 2.3.

d) (4 pts) Consider § =

W N =

. Unlike in ¢), ¥ is not in span ({71, 02, U3} ).

W

Find the vector in span({v}, 02, U3}) that is closest to . Do not stack the ;s into a matrix X
and then use X (X7 X)~! X7y Instead, use the fact that ¢, ¢3, ¢3 are orthonormal and have the
same span as 1, U2, U3. How does this simplify the problem?

Hint: What did you discover in Problem 1i)?

e) (5 pts) Open the the supplemental Jupyter Notebook we’ve created for Homework 7, which
can either be found here on DataHub, or here in the course GitHub repository.

There, you're asked to implement the function orthogonalize, which takes in an n x d ma-
trix V' whose columns are linearly independent, and returns a matrix ¢ whose columns are
orthonormal and have the same span as V. This problem is not autograded. Rather, in your
submission to this part, include a screenshot of your implementation and sample output in
your PDF for Homework 7.


https://eecs245.org/resources/labs/lab04/lab04-solutions.pdf
https://notes.eecs245.org/vectors-and-matrices/projection-1/
https://datahub.eecs245.org/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Feecs245%2Ffa25&urlpath=tree%2Ffa25%2Fhomeworks%2Fhw07%2Fhw07.ipynb&branch=main
https://github.com/eecs245/fa25/blob/main/homeworks/hw07/hw07.ipynb

f) (5 pts) A QR decomposition of a matrix A is a factorization of the form

A=QR

where () is an n x d matrix with orthonormal columns and R is an d x d upper triangular ma-
trix (a matrix that has Os below the diagonal).

1 11
For example,if A= [-1 0 1
1 1 2
1 11
A=1|-1 0 1| =
1 1 2

, a QR decomposition of A is

[ 1/V3 ~1/V2] [V3 2v3/3 2V3/3

~1/V3 0 0

| 1/V3 1/v2 ][0 0 1/v/2
Q R

Finding the ) in a QR decomposition is straightforward: apply Gram-Schmidt to the columns

of A, assuming A’s columns are

linearly independent. The question is how to find R.

(i) In the supplemental Jupyter Notebook, we’ve defined an arbitrary matrix A and call your
orthogonalize function on it, and give you hints as to how to find R. Using the experi-

mentation there, and what

(ii) Find a QR decomposition

you know about (), explain how to find R.

1 00
110

of A = 01 1l made up of the same three vectors you
0 0 1

worked with in parts a) through d) of this problem.

(iif) Given a QR decomposition of A, explain how to find another QR decomposition of A
with a (slightly) different Q and/or R.

The QR decomposition will be important when we study eigenvalues and eigenvectors in Chapter
5. These are the backbone of Google’s (original) search algorithm, PageRank.



