Lab 2: Empirical Risk and Simple Linear Regression
EECS 245, Fall 2025 at the University of Michigan

due by the end of your lab section on Wednesday, September 3rd, 2025

Name:

unigname:

Each lab worksheet will contain several activities, some of which will involve writing code
and others that will involve writing math on paper. To receive credit for a lab, you must
complete all activities and show your lab TA by the end of the lab section.

While you must get checked off by your lab TA individually, we encourage you to form
groups with 1-2 other students to complete the activities together.

Activity 1: Relative Squared Loss

Suppose we’d like to find the optimal parameter, w*, for the constant model h(z;) = w. To do so,
we use the following loss function, called the relative squared loss:

(i — h(x))?

Lrsq(yis h(@i)) = Vi

a) What value of w minimizes the average loss (i.e. empirical risk) when using the relative
squared loss function — that is, what is w*? Your answer should only be in terms of the vari-
ables n, y1,y2, . . ., yn, and any constants.

The next page is left blank for scratch work, in case you need more space.



Solution:
Since h(z;) = w for the constant model, relative squared loss for the constant model is:

(yi —w)
Yi
and so average relative squared loss for the constant model is:

Lrsq(yia w) =

Z": (yi —w)
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Risq(w) =
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To find the value of w that minimizes Rrsq(w), we’ll first find its first derivative and set it
to zero. The first derivative of Rrsq(w) is:

At this point, it'll be useful to step aside and find the derivative of Lysq(y;, w) with respect
to w, as this is the expression being summed. The derivative of Lysq(y;, w) with respect
to w is:
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Back to %Rrsq(w), we have:
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Solution: (continued) Setting this equal to 0 yields:
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This is known as the harmonic mean of y1, y2, ..., Yn-







b) Let C(y1,¥2, ..., yn) be your minimizer w* from the previous part. That is, for a particular
dataset y1,y2, ..., Yn, C'(y1, Y2, ..., yn) is the value of w that minimizes empirical risk for relative
squared loss on that dataset.

What is the value of lim C(1,3,5,y4) in terms of C(1,3,5)? Your answer should involve the

Y4 —00
function C and/or one or more constants.

Hint: To notice the pattern, evaluate C(1,3,5,100), C (1, 3,5,10000), and C(1,3,5,1000000).

Solution:
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c¢) What is the value of limOC (1,3,5,y4)? Again, your answer should involve the function C
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and/or one or more constants.

Solution:

lim O(L,3,5,y4) = I 4
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d) Based on the results of the previous two parts, when is the prediction C(y1, y2, .., yn) robust to
outliers? When is it not robust to outliers?



Solution:

C(y1,v2,...,yn) is great at ignoring large outliers. No matter how large you make any
particular value, C(y1,¥2,...,yn) is upper-bounded by -4 multiplied by the value of C
applied to all data points excluding the large outlier. This is as opposed to the regular
“arithmetic mean”, where if you make a single data point arbitrarily large, the mean also
becomes arbitrarily large (i.e. if y,, — oo, then Mean(y1, y2, ..., yn) — 00 to0).

However, C(y1,y2, ..., yn) is not robust to small outliers. As a particular data point ap-
proaches 0, the value of C(y1,¥2, ..., yn) also approaches 0 no matter how large the other
data points are.




Activity 2: Rapid Fire

Consider a dataset of n integers, y1,y2, . . ., yn, Whose histogram is given below:

01 2 3 456 7 8 91011121314151617 1819 2021 22 23 24 252627 2829 3031

a) Which of the following is closest to the constant prediction w* that minimizes:
1 Z 0 y;=w

nim |l viFw

O1 O O6 O7 O11 O15 O30

Solution: 30.
The minimizer of average 0-1 loss is the mode.

See: Chapter 1.3: Beyond Absolute and Squared Loss

b) Which of the following is closest to the constant prediction w* that minimizes:
1 n
=Y lyi — wl
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Solution: 7.
The minimizer of average absolute loss is the median. The outliers near 30 shift it from 6
to7.



https://notes.eecs245.org/supervised-learning/empirical-risk-minimization/#beyond-absolute-and-squared-loss

c) Which of the following is closest to the constant prediction w* that minimizes:
n ;(yz —w)
O1 O5 06 O7 O11 O15 O30

Solution: 11.
The minimizer of average squared loss is the mean, pulled upward by the heavy right
tail, so it’s above the median (7) and closest to 11.

d) Which of the following is closest to the constant prediction w* that minimizes:

n

1
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Solution: 15.
As p — oo, the minimizer is the midrange, halfway between min and max.

Activity 3: Slope of Mean Absolute Error

Consider a dataset of 8 points, y1,¥2, . . ., ys that are in sorted order, i.e. y1 < y2 < ... < ys.

Recall that mean absolute error, R,ps(w), is defined as:

n
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Rabs(w) =

This is a piecewise linear function that changes slope at each data point. The slope of R,,s(w) at
any w that is not a data point is:

d _ #left of w — #right of w

@Rabs(w) - n

Suppose that ys = 10, y5 = 14, ys = 22, and Raps(11) = 9. What is R,,s(22)?



Solution:
Raps(22) = 11.

We can write the points given to us as:

Y1,Y2,Ys, 107 147 227 Y7, Ys

Since there are an even number of data points (n = 8), the minimizer of absolute error is
not a single point but the entire interval between the two middle points. Here, the middle
two are 10 and 14, so every w € [10, 14] minimizes R,ps(w). This explains why the error is
flat inside that interval: the number of points on the left equals the number on the right, so
shifting w around does not change the error. As a result, Rps(11) = 9 and R,ps(14) = 9.
Once we move beyond 14, the balance breaks. There are now five points to the left and only
three to the right, so the slope of R,,s(w) becomes positive. The slope formula tells us:

d _ # left of w — # right of w

%Rabs(w) n

so for any w € (14, 22) we have

d 5—3
%Rabs(’lU) = T = i

This means that for every one unit we move to the right of w = 14, the error increases by 1.
Moving from w = 14 to w = 22 is a distance of 22 — 14 = 8 units, so the error increases by

8.5 =2.

1
1
Adding this to the baseline error of R,,s(14) = 9, we get:

Rabs(22) = Rabs(14) + (22 - 14) ) i
=9+2=11.

Here is a visualization of the solution to this problem:

- Raps(w) with n =8 points; zoomed view
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Activity 4: Programming

Complete the tasks in the 1ab02 . ipynb notebook, which you can either access through the DataHub
link on the course homepage or by pulling our GitHub repository. To receive credit for Activity 4,
you’ll need to submit your completed 1ab02. ipynb notebook to Gradescope and show your lab
TA that all test cases have passed. Instructions on how to do this are in the lab notebook.

10



Activity 5: Visualizing Changes in the Data

The problems in this final activity will help you visualize how changes in the data affect the opti-
mal simple linear regression line. To recap, this is the line h(z;) = wo + wix; defined by:
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r is the correlation coefficient between x and y, o, is the standard deviation of z, and o, is the
standard deviation of y.

Assume all data is in the first quadrant, i.e. all z; and y; are positive.

a) For the dataset shown below, how will the slope and intercept of the regression line change if
we move the red point in the direction of the arrow?
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Solution:
Moving this point upward increases both the slope and the intercept of the regression
line.

When this point is moved upward, its y-value increases while its z-value stays the same.
Because this point lies to the right of z, raising its y-value increases the term

= B =7
=il

)

which makes the slope wj larger.
At the same time, the mean § also increases, and since
* - * —
Wy =Y — W,

both a larger 7 and a larger w7 result in a higher intercept.

b) For the dataset shown below, how will the slope and intercept of the regression line change if
we move the red point in the direction of the arrow?

11



® @

(]

Solution:
Moving the red point downward decreases both the slope and the intercept of the
regression line.

When this point is moved downward, its y-value decreases while its z-value stays the same.
Because this point lies to the left of Z, lowering its y-value increases the term

n
Y (@i —2)(yi — 9),
i=1
in the negative direction, which makes the slope wj decrease.

At the same time, the mean § also decreases. Since

* = * =
Wy =Y — w1,

a smaller § lowers the intercept, but the effect of the decreased slope partially offsets this.
Overall, the intercept wg; will also decrease.

¢) Suppose we transform a dataset of (x;,y;) pairs by doubling each y-value, creating a trans-
formed dataset (z;, 2y;). How does the slope of the regression line fit to the transformed data
compare to the slope of the regression line fit to the original data? Can you prove your answer
from the formula for the slope of the regression line?
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Solution:
Doubling all y-values doubles the slope of the regression line.

We are asked how the slope of the regression line changes if every y; is doubled. Recall the
formula for the slope of the regression line:

e T - D= g)
' Yica (2 —2)?
Now consider the transformed dataset {(x;, 2y;)}. The new slope is

W — Y (2 — ) (2y: — 29)
L Yoz — )2

Factor out the 2:

;2 (i —2) (v — §)
e e (i — Z)2 .

Thus,

wy = 2w;.

d) Suppose we transform a dataset of (z;,y;) pairs by doubling each z-value, creating a trans-
formed dataset (2z;,y;). How does the slope of the regression line fit to the transformed data
compare to the slope of the regression line fit to the original data? Can you prove your answer
from the formula for the slope of the regression line?
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Solution:

Doubling all z-values halves the slope of the regression line.

We are asked how the slope of the regression line changes if every z; is doubled. Recall the
formula for the slope of the regression line:

W — Yii(zi —7)(yi — 9)
T o Yh(mi—z)?

Now consider the transformed dataset {(2x;,v;)}. Let Z’ = 2z. Then the new slope is

Factor out the constants:

Simplify:

Thus,
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e) Compare two different possible changes to the dataset shown below.

* Move the dashed point down ¢ units.

* Move the solid point down c units.

Which move will change the slope of the regression line more? Why?

-
-*
‘--------‘

15



Solution:
The slope of the regression line is given by

Yz —Z)(yi — )
Y(zi—1)?

When we move a single point down by ¢ units, the only part of the slope formula that
changes is the numerator
Y (2 — ) (i — 9),

which measures the covariance between z and y. The change in covariance due to moving
one point is proportional to (z; — z)(—c).

b=

* The dashed point is closer to the mean z, so |z; — Z| is relatively small. Moving this
point has only a modest effect on the slope.

* The solid point is farther from the mean z, so |z; — Z| is larger. Moving this point has a
much larger effect on the slope.

Aslope o (z; — ) (—c).

Therefore, moving the solid point down ¢ units will change the slope of the regression
line more than moving the dashed point. This is because points farther from the mean of
have greater leverage on the slope.
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