# Lab 4: Projections and Spans

EECS 245, Fall 2025 at the University of Michigan **due** by the end of your lab section on Wednesday, September 17th, 2025

| Name:     |  |  |
|-----------|--|--|
| uniqname: |  |  |

Each lab worksheet will contain several activities, some of which will involve writing code and others that will involve writing math on paper. To receive credit for a lab, you must complete all activities and show your lab TA by the end of the lab section.

While you must get checked off by your lab TA **individually**, we encourage you to form groups with 1-2 other students to complete the activities together.

## **Activity 1: Presidential Speeches and Cosine Similarity**

Complete the tasks in the lab04.ipynb notebook, which you can either access through the DataHub link on the course homepage or by pulling our GitHub repository. To receive credit for Activity 1, you'll need to submit your completed lab04.ipynb notebook to Gradescope and show your lab TA that all test cases have passed. Instructions on how to do this are in the lab notebook.

## **Activity 2: Projections**

In this activity, we'll explore (orthogonal) projections, as first introduced in Chapter 2.3.

Let 
$$\vec{c} = \begin{bmatrix} 1 \\ 2 \\ -4 \\ 0 \end{bmatrix}$$
 and  $\vec{d} = \begin{bmatrix} 3 \\ 2 \\ 0 \\ -1 \end{bmatrix}$ .

a) Find the projection of  $\vec{c}$  onto  $\vec{d}$ . Call this vector  $\vec{q}$ .

Solution: 
$$\vec{q} = \left(\frac{\vec{c} \cdot \vec{d}}{\vec{d} \cdot \vec{d}}\right) \vec{d}$$

$$= \frac{1 \cdot 3 + 2 \cdot 2 + (-4) \cdot 0 + 0 \cdot (-1)}{3^2 + 2^2 + 0^2 + (-1)^2} \vec{d}$$

$$= \frac{3 + 4}{9 + 4 + 1} \vec{d}$$

$$= \frac{7}{14} \vec{d}$$

$$= \frac{1}{2}\vec{d}$$

$$= \begin{bmatrix} 1.5 \\ 1 \\ 0 \\ -0.5 \end{bmatrix}$$

**b)** Find the error vector,  $\vec{r} = \vec{c} - \vec{q}$ . Which vector is  $\vec{r}$  orthogonal to,  $\vec{c}$  or  $\vec{d}$ ? Draw a rough picture of the relationship between  $\vec{c}$ ,  $\vec{d}$ ,  $\vec{q}$ , and  $\vec{r}$ .

First, let's find  $\vec{r}$ .

$$\vec{r} = \vec{c} - \vec{q}$$

$$= \begin{bmatrix} 1 \\ 2 \\ -4 \\ 0 \end{bmatrix} - \begin{bmatrix} 1.5 \\ 1 \\ 0 \\ -0.5 \end{bmatrix}$$

$$= \begin{bmatrix} -0.5 \\ 1 \\ -4 \\ 0.5 \end{bmatrix}$$

 $\vec{r}$  is orthogonal to  $\vec{d}$ , not  $\vec{c}$ , as confirmed by the dot products. The key idea we introduced in Chapter 2.3 is that the error vector is orthogonal to the vector we projected onto. Here,  $\vec{r}$  is the error vector and  $\vec{d}$  is the vector we projected onto.

$$\vec{r} \cdot \vec{c} = (-0.5) \cdot 1 + 1 \cdot 2 + (-4) \cdot (-4) + 0.5 \cdot 0$$
  
= -0.5 + 2 + 16  
= 17.5

$$\vec{r} \cdot \vec{d} = (-0.5) \cdot 3 + 1 \cdot 2 + (-4) \cdot 0 + 0.5 \cdot (-1)$$
$$= -1.5 + 2 - 0.5$$
$$= 0$$

# **Activity 3: Orthogonal Decomposition**

a) Let  $\vec{v}_1 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix} \vec{v}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$  and  $\vec{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$  Write  $\vec{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$  as a linear combination of  $\vec{v}_1$ ,  $\vec{v}_2$ , and  $\vec{v}_3$ , and verify that your answer is correct.

We are given

$$\vec{v}_1 = \begin{bmatrix} -1\\2\\2\\2 \end{bmatrix} \quad \vec{v}_2 = \begin{bmatrix} 2\\2\\-1 \end{bmatrix} \quad \vec{v}_3 = \begin{bmatrix} 2\\-1\\2 \end{bmatrix} \quad \vec{u} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

We're looking for scalars a, b, c such that  $\vec{u} = a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3$ .

## Solution 1: Solving a system of equations

$$a \begin{bmatrix} -1\\2\\2\\2 \end{bmatrix} + b \begin{bmatrix} 2\\2\\-1 \end{bmatrix} + c \begin{bmatrix} 2\\-1\\2 \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

Is equivalent to the system of equations:

$$-a + 2b + 2c = 1 (1)$$

$$2a + 2b - c = 1 \tag{2}$$

$$2a - b + 2c = 1 \tag{3}$$

Using elimination:

(Eq. 2) – (Eq. 3): 
$$(2a - 2a) + (2b - (-b)) + (-c - 2c) = 0$$
  
 $\Rightarrow 3b - 3c = 0 \Rightarrow b = c$ 

(Eq. 2) – (Eq. 1) : 
$$(2a - (-a)) + (2b - 2b) + (-c - 2c) = 0$$
  
 $\Rightarrow 3a - 3c = 0 \Rightarrow a = c$ 

This tells us that a = b = c. Plugging this back into Eq. 2 gives us:

$$-a + 2a + 2a = 1 \rightarrow 3a = 1 \rightarrow a = \frac{1}{3}$$

So,  $a = b = c = \frac{1}{3}$ , and:

$$\vec{u} = \frac{1}{3}\vec{v}_1 + \frac{1}{3}\vec{v}_2 + \frac{1}{3}\vec{v}_3$$

We can verify that we did this correctly by computing the right-hand side above:

$$\frac{1}{3}\vec{v}_1 + \frac{1}{3}\vec{v}_2 + \frac{1}{3}\vec{v}_3 = \frac{1}{3}\begin{bmatrix} -1\\2\\2 \end{bmatrix} + \frac{1}{3}\begin{bmatrix} 2\\2\\-1 \end{bmatrix} + \frac{1}{3}\begin{bmatrix} 2\\-1\\2 \end{bmatrix} = \begin{bmatrix} -1/3 + 2/3 + 2/3\\2/3 + 2/3 - 1/3\\2/3 - 1/3 + 2/3 \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \vec{u}$$

## Solution 2: Using the fact that $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are orthogonal

As is alluded to in part **b**), we can use the fact that  $\vec{v}_1, \vec{v}_2, \vec{v}_3$  are orthogonal to find coefficients a, b, and c by projecting  $\vec{u}$  onto each of the  $\vec{v}_i$ s. This is similar to what was done in the Orthogonal Decomposition section of Chapter 2.3.

5

Let  $\vec{p_i}$  be the projection of  $\vec{u}$  onto  $\vec{v_i}$ , for i=1,2,3. Then, we have:

$$\vec{p}_1 = \frac{\vec{u} \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{1 \cdot (-1) + 1 \cdot 2 + 1 \cdot 2}{(-1)^2 + 2^2 + 2^2} \vec{v}_1 = \frac{3}{9} \vec{v}_1 = \frac{1}{3} \vec{v}_1$$

$$\vec{p}_2 = \frac{\vec{u} \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2 = \frac{1 \cdot 2 + 1 \cdot 2 + 1 \cdot (-1)}{2^2 + 2^2 + (-1)^2} \vec{v}_2 = \frac{3}{9} \vec{v}_2 = \frac{1}{3} \vec{v}_2$$

$$\vec{p}_3 = \frac{\vec{u} \cdot \vec{v}_3}{\vec{v}_3 \cdot \vec{v}_3} \vec{v}_3 = \frac{1 \cdot 2 + 1 \cdot (-1) + 1 \cdot 2}{2^2 + (-1)^2 + 2^2} \vec{v}_3 = \frac{3}{9} \vec{v}_3 = \frac{1}{3} \vec{v}_3$$

Adding  $\vec{p}_1, \vec{p}_2, \vec{p}_3$  gives us:

$$\vec{p}_1 + \vec{p}_2 + \vec{p}_3 = \frac{1}{3}\vec{v}_1 + \frac{1}{3}\vec{v}_2 + \frac{1}{3}\vec{v}_3 = \vec{u}$$

**b)** In general, suppose that  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_d$  are **orthogonal** vectors in  $\mathbb{R}^n$ , meaning that  $\vec{v}_i \cdot \vec{v}_j = 0$  for all  $i \neq j$ . Given that it is possible to write  $\vec{u}$  as a linear combination of  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_d$ , show that the coefficients of the linear combination

$$\vec{u} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_d \vec{v}_d$$

are given by

$$a_i = \frac{\vec{u} \cdot \vec{v}_i}{\vec{v}_i \cdot \vec{v}_i}$$

Hint: Start by taking the dot product of both sides of the linear combination equation with  $\vec{v}_1$ . What do you notice?

We're told to assume that any pair of vectors among  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_d$  are orthogonal, and that  $\vec{u}$  can be written as a linear combination of  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_d$ .

$$\vec{u} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_d \vec{v}_d$$

As the hint suggests, let's take the dot product of both sides with  $\vec{v}_i$ , where i is some value in  $\{1, 2, ..., d\}$ .

$$\vec{u} \cdot \vec{v_i} = (a_1 \vec{v_1} + \dots + a_d \vec{v_d}) \cdot \vec{v_i}$$

Since  $\vec{v_i} \cdot \vec{v_j} = 0$  for  $i \neq j$ , only the i = j term survives:

$$\vec{u} \cdot \vec{v_i} = (a_1 \vec{v_1} + \dots + a_d \vec{v_d}) \cdot \vec{v_i}$$

$$= a_1(\vec{v_1} \cdot \vec{v_i}) + \dots + a_{i-1}(\vec{v_{i-1}} \cdot \vec{v_i}) + a_i(\vec{v_i} \cdot \vec{v_i}) + a_{i+1}(\vec{v_{i+1}} \cdot \vec{v_i}) + \dots + a_d(\vec{v_d} \cdot \vec{v_i})$$

$$= a_1(0) + \dots + a_{i-1}(0) + a_i(\vec{v_i} \cdot \vec{v_i}) + a_{i+1}(0) + \dots + a_d(0)$$

$$= a_i(\vec{v_i} \cdot \vec{v_i})$$

Solving for  $a_i$  above gives use

$$\vec{u} \cdot \vec{v_i} = a_i (\vec{v_i} \cdot \vec{v_i}) \implies a_i = \frac{\vec{u} \cdot \vec{v_i}}{\vec{v_i} \cdot \vec{v_i}}$$

Since *i* was arbitrary, the same calculation holds for any value of *i* in  $\{1, 2, \dots, d\}$ .

What we proved here in part **b**) is that when writing a vector  $\vec{u}$  as a linear combination of orthogonal vectors, the coefficients of the linear combination can be found by projecting the vector  $\vec{u}$  onto each of the orthogonal vectors and adding the results, rather than solving a system of equations.

## **Activity 4: Projections and Norms**

a) Suppose  $\vec{u}$  and  $\vec{v}$  are two unit vectors in  $\mathbb{R}^n$  — meaning that  $\|\vec{u}\| = 1$  and  $\|\vec{v}\| = 1$  — and that the angle between them is  $\alpha$ .

Show that the projection of  $\vec{u}$  onto  $\vec{v}$  is  $\vec{p} = (\cos \alpha) \vec{v}$ , and that the projection of  $\vec{v}$  onto  $\vec{u}$  is  $\vec{q} = (\cos \alpha) \vec{u}$ .

### **Solution:**

Since  $\vec{u}$  and  $\vec{v}$  are unit vectors, we know that  $||\vec{u}|| = 1$  and  $||\vec{v}|| = 1$ .

 $=(\cos\alpha)\vec{u}$ 

$$\vec{p} = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$$

$$= \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2} \vec{v}$$

$$= (\vec{u} \cdot \vec{v}) \vec{v} \qquad (\|\vec{v}\|^2 = 1)$$

$$= (\|\vec{u}\| \|\vec{v}\| \cos \alpha) \vec{v}$$

$$= (\cos \alpha) \vec{v}$$

$$\vec{q} = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^2} \vec{u}$$

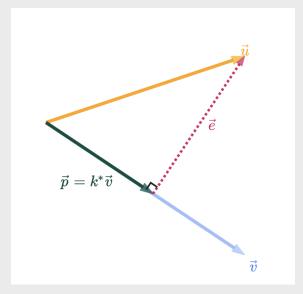
$$= (\vec{u} \cdot \vec{v}) \vec{u}$$

$$= (\|\vec{u}\| \|\vec{v}\| \cos \alpha) \cdot \vec{u}$$

The key ideas here are that if the two vectors we're dealing with are unit vectors, then (1) the dot product of the two vectors is the cosine of the angle between the two vectors, and (2) the projection of one vector onto the other is simply the other vector multiplied by the cosine of the angle between the two vectors.

- **b)** Now, suppose that  $\vec{u}, \vec{v} \in \mathbb{R}^n$  are arbitrary vectors, not necessarily unit vectors, and suppose  $\vec{p}$  is the projection of  $\vec{u}$  onto  $\vec{v}$ .
  - Is it possible for  $\vec{p}$  to be longer than  $\vec{u}$ ? If so, give an example. If not, prove why not.
  - Is it possible for  $\vec{p}$  to be longer than  $\vec{v}$ ? If so, give an example. If not, prove why not.

It's not possible for  $\vec{p}$  to be longer than  $\vec{u}$ , because  $\vec{p}$ ,  $\vec{u}$ , and the error vector  $\vec{u} - \vec{p}$  form a right triangle, where  $\vec{u}$  is the hypotenuse. So  $\vec{u}$  must be the longest of the three.



It is possible for  $\vec{p}$  to be longer than  $\vec{v}$ . Remember that  $\vec{p}$  is just a scalar multiple of  $\vec{v}$ , where the scalar is

$$\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}$$

There's nothing stopping this scalar from being greater than 1 (or less than -1), which would make  $\vec{p}$  longer than  $\vec{v}$ . As a concrete example, consider  $\vec{u} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$  and  $\vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ . Then,

$$\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} = \frac{3 \cdot 1 + 3 \cdot 0}{1^2 + 0^2} = 3$$

So,  $\vec{p} = 3\vec{v}$ , which is longer than  $\vec{v}$ .

## Activity 5: Lines in $\mathbb{R}^n$

In Chapter 2.4 — and yesterday's lecture — we saw that a line in  $\mathbb{R}^n$  can be expressed in **paramet**ric form as

$$L=\vec{p}+t\vec{v},t\in\mathbb{R}$$

where  $\vec{p}$  is a point on the line, and  $\vec{v}$  is a vector that points in the direction of the line. t is a free variable; different values for t will give us different points on L.

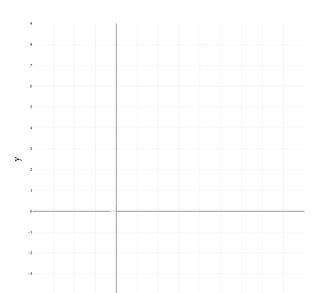
a) On the grid below, draw the vector  $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ , the vector  $\begin{bmatrix} 6 \\ -3 \end{bmatrix}$ , and the line  $L = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + t \begin{bmatrix} 6 \\ -3 \end{bmatrix}$ ,  $t \in \mathbb{R}$ .

$$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
, the vector



$$\begin{bmatrix} 6 \\ -3 \end{bmatrix}$$
 , and the line  $L=$ 

$$= \begin{bmatrix} 2 \\ 2 \end{bmatrix} + t \begin{bmatrix} 6 \\ -3 \end{bmatrix}, t \in$$



**Solution:** We're asked to draw the vectors and the line

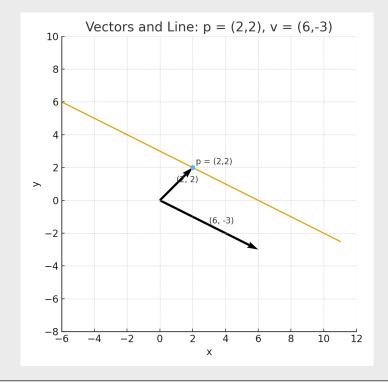
$$L = \vec{p} + t\vec{v}, \quad t \in \mathbb{R}$$

where 
$$\vec{p} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
 and  $\vec{v} = \begin{bmatrix} 6 \\ -3 \end{bmatrix}$ .

- The vector  $\vec{p} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$  is plotted from the origin. This "fixes" the point (2,2) on the line.
- The direction vector  $\vec{v} = \begin{bmatrix} 6 \\ -3 \end{bmatrix}$  is drawn from the origin. This vector indicates the slope and direction of the line.
- To sketch the line L, we start at the point  $\vec{p}$  and extend in the direction of  $\vec{v}$ . Let's plug in some values of t to get some points on the line:

$$t = 0 \implies (2,2)$$
  $t = 1 \implies (2,2) + (6,-3) = (8,-1)$ 

Plotting these points and connecting them with a straight line shows L. Extending the line in both directions corresponds to varying t over all real numbers.



**b)** Express the line  $L=\begin{bmatrix}2\\2\end{bmatrix}+t\begin{bmatrix}6\\-3\end{bmatrix}$ ,  $t\in\mathbb{R}$  in the "standard" form for lines in  $\mathbb{R}^2$ , y=mx+b. (Remember that only lines in  $\mathbb{R}^2$  can be expressed in this form; in higher dimensions, we need to use the parametric form. Think about why this is the case, and consult Chapter 2.4.)

We want to convert the parametric line

$$L = \vec{p} + t\vec{v}, \quad t \in \mathbb{R} \quad \text{where} \quad \vec{p} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \text{ and } \vec{v} = \begin{bmatrix} 6 \\ -3 \end{bmatrix}$$

into the slope–intercept form y = mx + b. There are a few possible solutions.

### Solution 1: Solve for t in terms of x

One solution is to write out the two components of the line as two separate equations:

$$x = 2 + 6t$$

$$y = 2 - 3t$$

These give the x- and y-coordinates of a point on L as t varies.

Let's solve the first equation for t, and then substitute that into the second equation to get y as a function of x.

$$t = \frac{x-2}{6}$$

$$\implies y = 2 - 3\left(\frac{x-2}{6}\right) = 2 - \frac{1}{2}(x-2) = 2 - \frac{1}{2}x + 1 = -\frac{1}{2}x + 3$$

Thus,

$$y = -\frac{1}{2}x + 3$$

## Solution 2: Find two points on the line

Another solution is to pick two points off the line and use them to find the slope and intercept. As we saw in part **a**), the points (2,2) and (8,-1) are both on the line, so its slope is

$$m = \frac{-1-2}{8-2} = -\frac{1}{2}$$

and its intercept is

$$b = 2 - m \cdot 2 = 2 - (-\frac{1}{2}) \cdot 2 = 3$$

So, the line is

$$y = -\frac{1}{2}x + 3$$

You can also more easily find the slope by looking at the direction vector  $\vec{v} = \begin{bmatrix} 6 \\ -3 \end{bmatrix}$ , which says that for every 6 units we move to the right, we move 3 units down, which implies a slope of  $\frac{-3}{6} = -\frac{1}{2}$ .

12

c) Why is the line  $L = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + t \begin{bmatrix} 6 \\ -3 \end{bmatrix}$ ,  $t \in \mathbb{R}$  not equal to the span of any one vector in  $\mathbb{R}^2$ ?

As we saw in Chapter 2.4, a key fact about the span of a single vector is that it is always a line through the origin. That is, for any  $\vec{v} \in \mathbb{R}^n$ ,

$$\operatorname{span}(\{\vec{v}\}) = \{s\vec{v} \mid s \in \mathbb{R}\}\$$

If s=0 above, we get the point (0,0,...,0), which must be in the span of any individual vector.

So, the short answer is that L is not the span of any single vector because it doesn't contain the origin. It doesn't have the origin as a fixed point — the fixed point it's defined in terms of is (2,2) — but we can also show that there is no t such that  $\begin{bmatrix} 2 \\ 2 \end{bmatrix} + t \begin{bmatrix} 6 \\ -3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ . If  $(0,0) \in L$ , there must be  $t \in \mathbb{R}$  with

$$0 = 2 + 6t$$

$$0 = 2 - 3t$$

The first equation implies that  $t = -\frac{1}{3}$ , and the second equation implies that  $t = \frac{2}{3}$ . These values are inconsistent, so  $(0,0) \notin L$ , and L cannot be the span of a single vector.

d) Find a line in  $\mathbb{R}^4$  that passes through (0,1,2,3) and is **orthogonal** to

## **Solution:**

Our line will be of the form

$$L = \underbrace{\begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}}_{ ext{fixed point}} + t \vec{v}, \quad t \in \mathbb{R}$$

where  $\vec{v}$  is the vector that describes the direction of the line. We want our line to be

orthogonal to  $\begin{bmatrix} 9 \\ 3 \\ 1 \\ -5 \end{bmatrix}$ , so we need to find a vector  $\vec{v}$  that is orthogonal to  $\begin{bmatrix} 9 \\ 3 \\ 1 \\ -5 \end{bmatrix}$ .  $\vec{v} = 0 \implies 9v_1 + 3v_2 + v_3 - 5v_4 = 0$ 

$$\begin{bmatrix} 9 \\ 3 \\ 1 \\ -5 \end{bmatrix} \cdot \vec{v} = 0 \implies 9v_1 + 3v_2 + v_3 - 5v_4 = 0$$

There are infinitely many solutions for  $v_1, v_2, v_3, v_4$  that satisfy the equation, meaning there are infinitely many possible lines that satisfy the condition in the question. Let's pick one direction vector:  $v_1 = 1$ ,  $v_2 = -4$ ,  $v_3 = 3$ ,  $v_4 = 0$ . This gives

$$9(1) + 3(-4) + 1(3) + (-5)(0) = 9 - 12 + 3 + 0 = 0$$

So,  $\vec{v} = \begin{bmatrix} 1 \\ -4 \\ 3 \\ 0 \end{bmatrix}$  is a valid direction vector for our line, and one possible line is

$$L = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} + t \begin{bmatrix} 1 \\ -4 \\ 3 \\ 0 \end{bmatrix}, \quad t \in \mathbb{R}$$

# **Activity 6: Planes**

An important idea from Chapter 2.4 is that two non-parallel vectors in  $\mathbb{R}^n$  (where  $n \geq 2$ ) span a plane in *n*-dimensional space. Here, we'll show you how to find the equation of such a plane, given two vectors in  $\mathbb{R}^3$ .

a) Given two vectors  $\vec{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$  and  $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$  in  $\mathbb{R}^3$ , show that the vector  $\vec{q}$  (defined below) is

14

orthogonal to both  $\vec{a}$  and  $\vec{b}$ .

$$\vec{q} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

The vector  $\vec{q}$  is called the **cross product** of  $\vec{a}$  and  $\vec{b}$ . The cross product is only defined for two vectors in  $\mathbb{R}^3$  specifically, and the product is another vector in  $\mathbb{R}^3$ . (This differentiates it from the dot product, which is defined for two vectors in any  $\mathbb{R}^n$ , and whose output is a scalar.)

## **Solution:**

$$\vec{a} \cdot \vec{q} = a_1(a_2b_3 - a_3b_2) + a_2(a_3b_1 - a_1b_3) + a_3(a_1b_2 - a_2b_1)$$

$$= a_1a_2b_3 - a_1a_3b_2 + a_2a_3b_1 - a_1a_2b_3 + a_1a_3b_2 - a_2a_3b_1$$

$$= 0$$

$$\vec{b} \cdot \vec{q} = b_1(a_2b_3 - a_3b_2) + b_2(a_3b_1 - a_1b_3) + b_3(a_1b_2 - a_2b_1)$$

$$= a_2b_1b_3 - a_3b_1b_2 + a_3b_1b_2 - a_1b_2b_3 + a_1b_2b_3 - a_2b_1b_3$$

$$= 0$$

**b)** Find the cross product of  $\vec{v}_1 = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$  and  $\vec{v}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$ .

#### **Solution:**

Let's call the cross product of  $\vec{v}_1$  and  $\vec{v}_2$   $\vec{q}$ .

$$\vec{q} = \begin{bmatrix} (-1) \cdot (-1) - 3 \cdot 2 \\ 3 \cdot 1 - 2 \cdot (-1) \\ 2 \cdot 2 - (-1) \cdot 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 - 6 \\ 3 + 2 \\ 4 + 1 \end{bmatrix}$$

$$= \begin{bmatrix} -5 \\ 5 \\ 5 \end{bmatrix}$$

c) Let  $\vec{q} = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix}$  be your answer to part b).

Verify that the points (0,0,0), (2,-1,3) and (1,2,-1) satisfy the equation

$$q_1 x + q_2 y + q_3 z = 0$$

15

The equation of the plane in question is

$$-5x + 5y + 5z = 0$$

For (0, 0, 0),

$$-5(0) + 5(0) + 5(0) = 0$$

For (2, -1, 3),

$$-5(2) + 5(-1) + 5(3)$$

$$= -10 - 5 + 15$$

$$= 0$$

For (1, 2, -1),

$$-5(1) + 5(2) + 5(-1)$$

$$= -5 + 10 - 5$$

$$= 0$$

Note that a simpler way of writing the equation of the plane is x - y - z = 0, which comes from dividing both sides of the original equation by -5. Another equivalent form is z = x - y.

Once you're done, if you'd like, you could rearrange  $q_1x + q_2y + q_3z = 0$  to get something of the form z = f(x, y).

**d)** Above, we wrote the equation of the plane spanned by  $\vec{v}_1$  and  $\vec{v}_2$  in the "standard form" for planes in  $\mathbb{R}^3$ , ax + by + cz + d = 0 (where d = 0).

Now, write the equation of the plane spanned by  $\vec{v}_1$  and  $\vec{v}_2$  in **parametric** form. This won't require much work; it's more that we want you to understand that there are two ways of expressing planes in  $\mathbb{R}^3$ .

$$P = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + s_1 \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} + s_2 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \quad s_1, s_2 \in \mathbb{R}$$

The plane spanned by  $\vec{v_1}$  and  $\vec{v_2}$  is the set of all of their possible linear combinations,

shown through the scalars  $s_1$  and  $s_2$ . The  $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$  at the start isn't necessary to write, since

if we set  $s_1 = s_2 = 0$  we get the point (0, 0, 0) anyways, but it's good to emphasize that the span of  $\vec{v_1}$  and  $\vec{v_2}$  includes the origin. The span of any collection of vectors always includes the origin.

**e) (Optional)** Using just what we've covered in this lab, this final part may be quite challenging at first. But, try it when you get a chance!

In  $\mathbb{R}^2$ , any two points uniquely determine a line. In  $\mathbb{R}^3$ , any three points uniquely determine a plane.

Consider the points (3,4,5), (1,9,-2), and (2,2,0). Find the equation of the plane that passes through all three points, and express that plane in (1) parametric form and (2) standard form, ax + by + cz + d = 0.

Hint: The plane does not necessarily pass through the origin, unlike the plane we found in part c), which had to pass through the origin by virtue of being the span of a set of vectors.

The parametric form is much easier to find — start with it, and use your answer to find the equation in standard form.

Start by picking one of the three points; we'll arbitrarily choose (3,4,5) for this solution. We now need to find two vectors on the plane, which we can do by subtracting our chosen point from the other two.

$$\vec{u} = \begin{bmatrix} 1\\9\\-2 \end{bmatrix} - \begin{bmatrix} 3\\4\\5 \end{bmatrix}$$
$$= \begin{bmatrix} -2\\5\\-7 \end{bmatrix}$$

$$\vec{v} = \begin{bmatrix} 2\\2\\0 \end{bmatrix} - \begin{bmatrix} 3\\4\\5 \end{bmatrix}$$
$$= \begin{bmatrix} -1\\-2\\-5 \end{bmatrix}$$

Now that we have our vectors, we can write the plane in parametric form:

$$P = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} + s_1 \begin{bmatrix} -2 \\ 5 \\ -7 \end{bmatrix} + s_2 \begin{bmatrix} -1 \\ -2 \\ -5 \end{bmatrix}, \quad s_1, s_2 \in \mathbb{R}$$

In part c), we used the components of the cross product to define the equation of the plane spanned by two vectors, so let's calculate that next:

$$c = \begin{bmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \cdot (-5) - (-7) \cdot (-2) \\ (-7) \cdot (-1) - (-2) \cdot (-5) \\ (-2) \cdot (-2) - 5 \cdot (-1) \end{bmatrix}$$

$$= \begin{bmatrix} -25 - 14 \\ 7 - 10 \\ 4 + 5 \end{bmatrix}$$

$$= \begin{bmatrix} -39 \\ -3 \\ 9 \end{bmatrix}$$

We've got one last step, and that's to solve for the offset d in ax + by + cz + d = 0. We can do this by plugging any of our points into the equation with our vector components

as coefficients.

$$-39x - 3y + 9z + d = 0$$

$$-39(3) - 3(4) + 9(5) + d = 0$$

$$-117 - 12 + 45 + d = 0$$

$$-84 + d = 0$$

$$d = 84$$

So, our final equation is

$$P = -39x - 3y + 9z + 84 = 0$$

You can verify that the points (3,4,5), (1,9,-2), and (2,2,0) all satisfy the equation above.