Lab 5: Vector Spaces, Subspaces, and Bases
EECS 245, Fall 2025 at the University of Michigan
due by the end of your lab section on Wednesday, September 24th, 2025

Name:

unigname:

Each lab worksheet will contain several activities, some of which will involve writing code
and others that will involve writing math on paper. To receive credit for a lab, you must
complete all activities and show your lab TA by the end of the lab section.

While you must get checked off by your lab TA individually, we encourage you to form
groups with 1-2 other students to complete the activities together.

Acknowledgements: Activities 1, 3, and 6 are taken from here, and Activity 4 is taken from Linear
Algebra by Gilbert Strang. Consider looking at these sources for more practice problems.


https://web.pdx.edu/~erdman/LINALG/Linalg_pdf.pdf

Activity 1: Linear Independence
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a) Find scalars a, b, ¢, and d such that aw + bZ + ¢ + dZ = 0, and at least one of the scalars is
non-zero. By doing so, you're showing that , &, ¢/, Z are linearly dependent.

Solution:
The systematic way to do this is to write out the vector equation as a system of equations:

a4+ b+ cj+dzZ=0

is equivalent to:

1 1 0 0 0
1 0 0 1 0
@l +b 1 +c 1 +d ol = lo
0 0 1 1 0

which is equivalent to:

a+b+c+d=0

a+d=0
b+c=0
c+d=0

Equation (2) tells us @ = —d, equation (4) tells us ¢ = —d, and equation (3) tells us b =
—c = —(—d) = d. So, solutions for the coefficients are of the form a = —d,b = d,c = —d,
for any d € R. The simplest choice is to pick d = 1, which givesusa = —1,b = 1,¢ = —1,
and indeed we can verify that
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b) Find scalars A, B, and C such that 2 = A& + BZ 4 Cy. This is another way of showing that
W, &, v, 7 are linearly dependent.



Solution:
Using the fact that —/ 4+ ¥ — ¢+ 7 = 0, we can write
Z=w—-F+7y

So, A =1,B = —1,C = 1. This is just one of the many ways to write any one of these
vectors as a linear combination of the other three.

— =

¢) Show that span({w, #, ¥, 7}) # R* by finding a vector & € R* such that ' ¢ span{w, 7, 7, 7}

—

Solution: Recall, span({, Z, 7, Z}) is the set of all linear combinations of W, Z, ¥, Z. So,
}

any vector in span({, 7, ¥, Z}) can be written in the form
1 1 0 0 a+b
T | 0 0 1|  Ja+d
al + b +cy+d7=a 0 +b 1 +c 1 +d ol = letd
0 0 1 1 b+c

All we need to do in this part is find a vector & € R* that can’t be written in this way.
Suppose we choose a = 1,b = 2,¢ = 3,d = 4. Then,a+b =3, a+d=5,c+d =17,
3

and b+ ¢ = 5. If we construct the vector v = i ,it’s in span({w, Z, ¥, Z}) since it’s just
5
W+ 27 + 3y + 4Z. But if we change one of these components, say the last component

from 5 to 4, then we’d need to solve the system

a+b=3
a+d=5
c+d=7
b+c=14

but this system will be inconsistent, since the first three equations will satisfy a = 1,b =
3

2,c = 3,d = 4, but the last equation willbe b +c =4 # 5. So, |V = is in R* but not

5
7
4

d) Why is the fact that span({iw, 7, %, 7}) # R* enough to conclude that , 7,7, z are linearly
dependent?



Solution: ~ Any four linearly independent vectors in IR* must span all of R*. So, if
span({w, Z, v, z}) # R*, then since we're dealing with 4 vectors, they must be linearly
dependent (since if they linearly independent, they would indeed span all of IR*).




Activity 2: Formal Definition of Linear Independence

Suppose U1, U, . .., Ug € R", and that be span({71, V2, ..., U4}).

a) Give a one sentence English explanation of what it means for b € span({#;, o, . . ., 4}).
Solution:
If b € span({v}, v, ..., Us}), then there exist scalars ay,ag,...,aq such that b = a;0; +
asVs + ...+ aqiy, i.e. b can be written as a linear combination of ¢, vs, . . ., Uy.

b) Suppose that a;v + asvh + ... + aqvy = b and U1 + cols + ...+ cqlg = 5, where at least one
of the a;’s is different from its corresponding c;.
Using the formal definition of linear independence from Chapter 2.4, determine whether or
not ¥y, ¥, . . ., Ug are linearly independent, and prove your answer.

Solution:
We're given that

a0 + ag¥s + ... +aqgig = b

101 +eotig+ ... +cqgUg=0b
Subtracting the two equations gives us

(al — 61)171 + (CLQ = 02)172 +...+ (ad = Cd)ﬁd =0

We know that vectors 91, v, . . . , Ug are linearly independent if the only way to write the
zero vector 0 as a linear combination of them is to have all the coefficients be zero.

But here, we were told that at least one of the a;’s is different from its corresponding c;,
meaning that at least one of the (a; — ¢;) values is non-zero. This means that there is some

way to create 0 using a non-zero linear combination of v, ¥, . . ., Uiy, which means that
U1, Vo, . . ., Uy are linearly dependent.
¢) Find another set of coefficients k1, ko, . . ., kg such that

k1171+k2172+...+kd17d:g
and at least one of the k;’s is different from its corresponding a; or c;.
By doing this, you're showing that if there is at least one way to write b as a linear combination

of a set of vectors, then there are infinitely many ways to write b as a linear combination of
those vectors; there can’t just be two or three ways to do it.


https://notes.eecs245.org/vectors-and-matrices/span-linear-independence/#linear-independence

Solution:
In the previous proof we subtracted the following two equations. What if we add them?

101 + ag¥s + ... + agly =

c1U1 + U2 + ... +cq¥y =
This would give us

(a1 -+ 01)171 1 (CLQ -+ 02)172 4+ ...+ (ad + Cd)ﬁd = 25
Dividing both sides by 2 gives us

a;+c\ . as +ca\ aq + ¢ . -
<12 1>v1+< 22 2>v2—|—...—|—<d2 d>vd:b

This is another linear combination of ¥, ¥, . .., U that equals b! So ki = ‘“TJ“”, ky =
a2+02 k _ ad-‘er
2 yhd — T

PR

Why does this imply that there are infinitely many ways to write b as a linear combination
of 1, ¥, ..., Uq? It's because we could repeat this process once again, to get ‘“TH“, %,

Y % as coefficients, and then again, and again. There are other ways to write b as
a linear combination of vy, ¥, . . ., Uy since they're linearly dependent, but we’d need to
know more about the specific relationships between the vectors to find more.




Activity 3: Introduction to Subspaces

As discussed in Chapter 2.6, a subspace S of a vector space V' is a subset of V' that itself is a vector
space, contains the zero vector, and is closed under addition and scalar multiplication. That is, if
you take any two vectors in in S, any of their linear combinations must also be in S.

Only one of the following is a subspace of R®. Which one? Explain why the others are not sub-
spaces.

T
The set of vectors ¥ = |y | in R® such that
z
(i) z+2y—32=14
1 2
(ii) visontheline L = |-2| +t [3] ,t€e R
0 4

(iii) r+y+z=0andz—y+2=1
(iv) x=—-zandz =z

V) 22 +y? ==z


https://notes.eecs245.org/vectors-and-matrices/vector-spaces/

Solution:
Recall that a subspace must contain the zero vector and must be closed under addition and
scalar multiplication.

(i) * + 2y — 3z = 4 is not a subspace. The zero vector is not in the set, since plugging in
z =0,y = 0,z = 0 to the equation z + 2y — 32 = 4 gives us 0 +0 — 0 = 4, which is
not true. = + 2y — 3z = 4 is a plane in R?, and planes are subspaces only when they
contain the zero vector.

1 2
(i) Theline L = | —2| +t [3| ,t € R is not a subspace. The zero vector is not in the set,
0 4
1 2 0
since no value of t makes |—2| +¢ |3| = |0|. The first equation implies 1 + 2t =
0 4 0
0 = t= —%, while the last implies 0 4+ 4t = 0 = ¢ = 0, which is a contradiction.

(iii)  +y+ 2z = 0and z — y + 2 = 1 is not a subspace. These are two non-parallel planes in
R?, which means their intersection is a line in IR3. Lines are subspaces only when they
pass through the origin, i.e. contain the zero vector. But the second equation requires
r—y+z =1 butat (0,0,0) thisis 0 — 0 + 0 = 1, which is not true, meaning that the
zero vector is not in the set and so the set is not a subspace.

(iv) = —zand x = z|is a subspace| For z = —z and « = z to both be true, we’d need

z = —z, which implies z = 0 and = = 0. So, this is the set of all vectors whose first and
third components are 0. The zero vector is in the set (since the zero vector’s first and
third components are 0), and the set is closed under addition and scalar multiplication,

since if
0 0]
U= |la|, U= |b
0 0]
then )
0
ci~+dv = |ca+db
0 -
is also in the set. So, the set of vectors in R? that satisfy # = —z and = = z is a subspace.

(v) 22 +y? = z is not a subspace. The zero vector is the set, since plugging in (z,y,2) =
(0,0,0) gives us 02 + 02 = 0, which is fine. But, the set is not closed under scalar

3 3 6
multiplication. For example, consider | 4 |, whichisin theset,but2 [ 4 | = | 8 | is
25 25 50

not in the set, since 62 + 82 = 100 # 50.




Activity 4: Finding Non-Examples of Subspaces

In this activity, you'll find sets of vectors in IR? that satisfy some, but not all, of the requirements
for a subspace. Think creatively, and since we're working in IR?, visualize the vectors!

a) Find a set of vectors in IR? such that the sum of any two vectors @ and 7 in the set is also in the
set, but 17 is possibly not in the set.

Solution:
One possible answer is the set of all vectors with integer components, e.g.

S:{[Z]!a,bez}

The sum of any two vectors in S is also in .S, since the sum of two integers is another
. L. o 1 i1 . .
integer. However, 1% is not necessarily in S; for example, a = |?| isnotin S.

2 211 >

So, this S is a subset, but not a subspace.

b) Find a set of vectors in IR? such that ¢t is in the set for any vector ¥ in the set and any scalar c,
but the sum of any two vectors « and ¢ in the set is possibly not in the set.



Solution:

One possible answer is the set of all vectors in which either both components are positive,
both components are negative, or both components are zero. In other words, this is the
set of all vectors that exist in the top-right and bottom-left quadrants of the xzy-plane.

S:{m |a,bGIR,a20,b200ra§0,b§00ra=0,b:0}

44

Two vectors in S, for example, are :2))] (top right) and [_ﬂ (bottom left). Any scalar
: 2] . : 2 2k| . . . . .
multiple of [3] isalsoin S; k [3] = [3 k} is in the top-right quadrant if £ > 0 and in the

bottom-left quadrant if £ < 0.

—4

2
But, the sum [3} + {_1

-2 . . .
} = [ 9 ] is not in §, since it is in the second quadrant.

10




Activity 5: Bases

Recall from Chapter 2.6 that a basis for a subspace S is a set of vectors that

1. spanall of S, and

2. are linearly independent

In each part below, find two different possible bases for the given vector space, and state the
dimension of the vector space. (Note that this is effectively what you're doing in Problems 4 and
5 of Homework 4, we just hadn’t introduced the term “basis” at that point.)

RTETETT

11


https://eecs245.org/resources/homeworks/hw04/hw04.pdf
https://eecs245.org/resources/homeworks/hw04/hw04.pdf

Solution: Here, we’ll employ the algorithm mentioned at the end of Chapter 2.4 to find
a linearly independent subset of S that spans it.
Let’s call the set of vectors in our basis 5.

1
e We'll start with B = 3
3
[—3] 1
e | 9] isjust =3 |3 |, so we won't add it.
| —9] 3
[ 1] 1
e | 5| is not a scalar multiple of |3|. We know this because if it were the
| —1] 3
1 1
case that | 5 = k (3| for some scalar k, then we'd need 1 = k, 5 = 3k,
-1 3
1
and —1 = 3k, which are inconsistent. So, we’ll add | 5 | to B, which now is
—1
1 1
B = 31,15
3 -1
2 1 1
e Is | 7| a linear combination of |3| and | 5 |? To determine whether it is, we’ll
4 3 —1

look for scalars a and b such that

1 1 2
al|3|+b|5|=|T7
3 -1 4

This is equivalent to the system

a+b=2
3a+5b=7
3a—b=14

Subtracting equations 2 and 3 gives 6b = 3 = b = 3, and plugging this into
equation 1 gives a+ 1 = 2 = a = 3. Let’s check if this system is consistent.

1 1
Evaluating 3 [3| + 3 | 5 | givesus
3 -1

12



https://notes.eecs245.org/vectors-and-matrices/span-linear-independence/#linear-independence

3 1 1 1 [3/2 1/2
5 3| + 5 51 =19/2| +| 5/2
3 —1 19 /2 —1/2
o
= |7
_4_
2 1 (1
So, 7| is a linear combination of |3| and | 5 |, so we won’t add it to B. (Re-
4 3 —1
member, the point of B is that it is linearly independent and spans S')
1 1 1
e What's left is |4|. Is it a linear combination of (3| and | 5 |? To determine
1 3 —1

whether it is, we’ll look for scalars a and b such that

1 1 1
a |3 +b| 5| =14
3 -1 1

This is equivalent to the system

Subtracting equatlons 2 and 3 g1ves 6b =3 = b=
equation 1 givesa+1 =1 = a = 3

at+b=1
3a+5b=4
3a—b=1

1
2

5, and plugging this into

Let’s check if thls system is consistent.

, 50 we won't add it to B.

is a linearly independent subset of S that spans S, i.e. itis a

1 1
Evaluating% 3 —|—% 5 gives us 4
3 _
1
So, |4 is a linear combination of 3 and 5
1 3 —1
1 1
So, B = 31,5
3 —1

basis for S. The dimension of S is 2.

1

If we want another basis, we could just swap out |3

we considered adding to B. We didn’t add |4

3
1
to B
1

13

1
for |4
1

, the most recent vector

since it’s a linear combination of




1 1 1 1 1
[3] and [ 5 ] , but that also means that {3] is a linear combination of {4] and [ 5 } ,

3 -1 3 1 -1

1 1 1
meaning that we can create with |:4] and { 5 :| anything we could create with |:3] and
1 -1 3

1 1 1
! 5 ] . So, another basis for S is { |:4] , ! 5 ] }
—1 1 —1

b) S = {[vl} | v1 = —vo;v1,v9 € ]R}
v

Solution:
One basis for S is { [_11] }, since any vector in S is a scalar multiple of [_11} The

dimension of S'is 1.

Another basis for S is { [55] } There’s nothing special about the number 5 — replace it

with any other non-zero number and you'll get another basis for S.

o S=

U1
U2
vg = 0;v1,v2,v3 € R

U4

14




Solution:

0
One basis for S is 0 , since any vector in S is a linear combination of

1 0
0 0
0f”’ 71
0 0 0
these three vectors. The dimension of S is 3.

The example basis above is perhaps the simplest possible basis for S, but there are in-
finitely many other bases for S. For example, other ones are

2 0 0
0 -394 0
(N 0 7115
0 0 0
and
3 0 0
5 -394 0
217 0 7115
0 0 0

15




Activity 6: Intersections of Subspaces

Let:
1 0
. 1 —4
* M be the subspace of R* spanned by 1 and 1
0 5
0 1
* N be the subspace of R* spanned by _12 and _11
2 3

a) Find a vector that belongs to both M and N. (In other words, find a vector ¥ such that ¥ € M
and v € N.)

There are infinitely many answers; pick the answer with a first component of 1.

16



Solution:

1 1 0
_2 is a vector in both M and N; it’s the sum of 1 and _14 , and it’s also the sum
5 0
0 1
—2 —1
of 1 and 1
2 3

Let’s suppose you didn’t initially notice the fact above. How would we approach the
problem more systematically?

1 0 a
. . 1 —4 a—4b . .
Any vector in M is of the form a 1 +b 11 = la 4| Any vector in N is of the
0 5 5b
0 1 d
—2 —1 —2¢c—d
form c 1 +d 1= cxd
2 3 2c + 3d

To find a vector that belongs to both M and IV, we need to find scalars a, b, ¢, d such that

a:d
a—4b= —2c—d
at+b=c+d

5b = 2¢c+ 3d

The boxed = 1 comes from the fact that we were told to pick the answer with a first
component of 1. So, for this solution, a = d = 1.

Plugging these into the third equation gives 1 + b = ¢+ 1, which implies b = c. Plugging
this into the second equation gives 1 — 4b = —2b — 1, which implies 2b = 2 or b = 1, and

from the fact that b = c we have ¢ = 1.

So,a = b = c = d = 1 should give us a vector that belongs to both M and N. Let’s check:

1 0 1
1 —4 -3
S F R I I
0 5 5

shows that this vector is in M

and

17




=2 —1 -3
1 1 +1 1 9
2 3 )

shows that this vector is in N

So, _23 is in both M and N.

5

b) Fill in the blanks: the set of all vectors that belong to both M and N is a subspace of R* with
dimension

Use the space below for scratch work.

Solution:
The blank should be , The set of all vectors that belong to both M and N form a line,
or 1-dimensional subspace of R*.

That line is

Where did this come from? In the previous part, we fixed that the first component of the
vector we were looking for was 1. But, if we change that to 2, then we’d have found the
2

solution a = b = ¢ = d = 2, which would have told us —46 is in both M and N.

1

So, any vector in both M and N is a scalar multiple of _23
5
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