
Lab 7: Inverses Solutions
EECS 245, Fall 2025 at the University of Michigan
due by the end of your lab section on Wednesday, October 8th, 2025

Name:

uniqname:

Each lab worksheet will contain several activities, some of which will involve writing code
and others that will involve writing math on paper. To receive credit for a lab, you must
complete all activities and show your lab TA by the end of the lab section.

While you must get checked off by your lab TA individually, we encourage you to form
groups with 1-2 other students to complete the activities together.

Activity 1: Basics of Invertibility
Suppose A is an n× n matrix. Chapter 2.9 describes several equivalent conditions that guarantee
that A is invertible. State as many of these equivalent conditions as you can, without looking at
the notes.

Solution: If A is an n× n matrix, then A is invertible if and only if:
• rank(A) = n

• A’s columns are linearly independent (and hence colsp(A) = Rn)

• A’s rows are linearly independent (and hence rowsp(A) = colsp(AT ) = Rn)

• A’s null space is only the zero vector, i.e. nullsp(A) = {⃗0}

• det(A) ̸= 0

Activity 2: Symbolic Inverses
Given that A is an invertible n×n matrix that satisfies A4 − 3A2 + 2A− 4I = 0, find an expression
for A−1 in terms of A.
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Solution: The goal is to find another matrix B such that AB = BA = I . We can do this by
isolating the identity matrix, I , and then trying to write the other side of the equation as A
times some other matrix.

A4 − 3A2 + 2A− 4I = 0

A4 − 3A2 + 2A = 4I

A(A3 − 3A+ 2I) = 4I

A

(
1

4
(A3 − 3A+ 2I)

)
= I

So, A−1 =
1

4
(A3 − 3A+ 2I) .

We derived A−1 by factoring out A on the left, i.e. A
(
1
4 (A

3 − 3A+ 2I)
)
= I . For A−1

to be the inverse of A, it must also be true that
(
1
4 (A

3 − 3A+ 2I)
)
A = I ; this fact is not

automatically true in general, since the order of multiplication matters. But here, we don’t
need to do any additional work, since our factorization only involved powers of A, and in
(say) A2 = AA the order of multiplication doesn’t matter.
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Activity 3: True or False?
In each part, either prove that the statement is true or provide a counterexample.

a) If A and B are both invertible n× n matrices, then A+B is invertible.

Solution: False. Suppose A =

[
1 0
0 1

]
and B =

[
−1 0
0 −1

]
. These are both invertible

matrices, with A−1 = A and B−1 = B.

But

A+B =

[
0 0
0 0

]
is not invertible, since its columns don’t span R2.

b) If A2 is invertible, then A is invertible.
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Solution: True. There are a few ways to reason about this, all of which are important.

Solution 1: By direct construction
One way to prove that A is invertible is to find its inverse. Since A2 is invertible, there
must exist some matrix B such that

A2B = I, BA2 = I

Note that the inclusion of both orders is important, since in general, order matters for
matrix multiplication. Writing A2 = AA in the first equation gives us

A(AB) = I

This tells us that AB is the inverse of A, so A is invertible.

If we used the second equation instead, we’d have

(BA)A = I

So, we’d call AB the right inverse of A (since it’s the inverse that multiplies on the right)
and BA the left inverse. A general fact is that if A has both a left and right inverse, they
must be the same, meaning that AB must be equal to BA here (remember this is not true
in general for arbitrary matrices A and B). A quick proof of this is

BA = BAI = BA(AAB) = BAAAB = (BAA)AB = IAB = AB

So, in short, A−1 = AB = BA, and since we’ve found A’s inverse, A must be invertible.

Solution 2: The null space perspective
Let’s argue by contradiction. Suppose A2 is invertible, but A is not. This would imply
that A2 null space is just the zero vector, 0⃗, while A’s null space is not just 0⃗. Suppose x⃗ is
some vector other than 0⃗ in nullsp(A), meaning that

Ax⃗ = 0⃗

But, left-multiplying both sides by A gives us

A(Ax⃗) = A0⃗ =⇒ A2x⃗ = 0⃗

This tells us that x⃗ is in the null space of A2, since A2x⃗ = 0⃗. But, this contradicts our
assumption that A2 is invertible, because the only vector in the null space of an invertible
matrix is the zero vector. So, our original assumption that A is not invertible must be
false, and A must be invertible.

Solution 3: The determinant perspective
A fact buried in Chapter 2.9 is that if A and B are two n× n matrices, then

det(A)det(B) = det(AB)

So,
det(A2) = det(A ·A) = det(A) · det(A) = det(A)2
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But, we also know that invertible matrices have non-zero determinants, so we’re given
that det(A2) ̸= 0. But, since det(A2) = det(A)2, this implies that det(A)2 ̸= 0, and so
det(A) ̸= 0 too, and so A is invertible.

c) If A

 3
1
−1

 =

94
3

 and A

40
2

 =

00
0

, then A is invertible. (What could rank(A) be?)

Solution: False. A is not invertible, because its null space contains more than just the
zero vector. 40

2

 ∈ nullsp(A)

We’re also given some non-zero vector in the column space of A: 3
1
−1

 ∈ colsp(A)

A doesn’t have rank 3, because then A would have a trivial null space of just 0⃗, and it
doesn’t have rank 0, because then A would not have any vectors in its column space
other than 0⃗.
So, rank(A) ∈ {1, 2}.

5



Activity 4: The 2× 2 Case

Recall that the inverse of the 2× 2 matrix A =

[
a b
c d

]
is given by

A−1 =
1

ad− bc

[
d −b
−c a

]

Using the fact above, find scalars x1 and x2 such that

2x1 − 3x2 = 6

5x1 + 5x2 = 10

Hint: First, write the system of equations in the form Ax⃗ = b⃗. If A is invertible, and Ax⃗ = b⃗, then what is
x⃗?

Solution: Written in matrix-vector form, the system of equations is Ax⃗ = b⃗, where

A =

[
2 −3
5 5

]
, b⃗ =

[
6
10

]
Then, the scalars x1 and x2 that satisfy the system are contained in the vector x⃗, where

x⃗ = A−1⃗b

Using the provided formula for A−1, we have

A−1 =
1

2 · 5− (−3) · 5

[
5 −(−3)
−5 2

]
=

1

25

[
5 3
−5 2

]
=

[
1/5 3/25
−1/5 2/25

]
So,

x⃗ = A−1⃗b =

[
1/5 3/25
−1/5 2/25

] [
6
10

]
=

[
60/25
−10/25

]
=

[
12/5
−2/5

]
Therefore, x1 = 12/5 and x2 = −2/5.
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Activity 5: Thinking in Transformations
Suppose f : R3 → R3 is a linear transformation represented by the matrix A.

Furthermore, suppose that f

10
0

 =

03
4

, f

 0
10
0

 =

 0
4
−3

, and f

00
1

 =

10
0

.

a) Find f

21
2

. After that, find the matrix A corresponding to f , i.e. where f(x⃗) = Ax⃗.
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Solution: First, using just the properties of linear transformations, we can find

f

21
2

. Recall that a linear transformation f satisfies

• f(x⃗+ y⃗) = f(x⃗) + f(y⃗)

• f(cx⃗) = cf(x⃗)

In other words, f preserves linear combinations, i.e. f(ax⃗+ by⃗) = af(x⃗) + bf(y⃗).

Let’s decompose f

21
2

 into a linear combination of outputs we already know.

f

21
2

 = f

2

10
0

+
1

10

 0
10
0

+ 2

00
1


= 2f

10
0

+
1

10
f

 0
10
0

+ 2f

00
1


︸ ︷︷ ︸

property of linear transformations

= 2

03
4

+
1

10

 0
4
−3

+ 2

10
0


=

26
8

+

 0
4/10
−3/10

+

20
0


=

 4
6.4
7.7



So, f

21
2

 =

 4
6.4
7.7

.

Next, we need to find the matrix A corresponding to f , i.e. where f(x⃗) = Ax⃗. Since f is
a linear transformation, we know that f(x⃗) = Ax⃗ for some matrix A.

• The first column of A is given by f

10
0

, which we’re told is

03
4

.

• The second column of A is given by f

01
0

, which we’ve computed above to be 0
4/10
−3/10

.
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• The third column of A is given by f

00
1

, which we’re told is

10
0

.

So,

A =

0 0 1
3 4/10 0
4 −3/10 0


If that seems too simple to be true, you can verify that multiplying A by

21
2

 gives us 4
6.4
7.7

, and that multiplying A by the three vectors in the question give the outputs we’re

told. Remember that A

10
0

 returns just the first column of A, and so on.

b) Find a diagonal matrix D and an orthogonal matrix Q such that A = QD. (Not every matrix
can be written in this form, but this particular A can.) Then, describe in English how f trans-
forms a vector x⃗.
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Solution:
Remember that

• Diagonal matrices have 0s everywhere except on the diagonal, and have the effect
of stretching/compressing each axis/dimension of the input vector independently.

• Orthogonal matrices have columns that are orthonormal, meaning their columns
are unit vectors that are orthogonal to one another.

In

A =

0 0 1
3 4/10 0
4 −3/10 0


You might notice that A’s first column is 5 times

 0
3/5
4/5

, which is a unit vector. You

might also notice that A’s second column is (1/2) times

 0
4/5
−3/5

, which is another unit

vector orthogonal to the first column. And finally, A’s third column is already a unit
vector, and its orthogonal to the first two columns.

So, if we put these orthogonal unit vectors into the columns of Q, and the scaling factors
of 5, 1/2, and 1 into the diagonal of D, we have

A =

0 0 1
3 4/10 0
4 −3/10 0

 =

 0 0 1
3/5 4/5 0
4/5 −3/5 0


︸ ︷︷ ︸

Q

5 0 0
0 1/2 0
0 0 1


︸ ︷︷ ︸

D

So, Q =

 0 0 1
3/5 4/5 0
4/5 −3/5 0

 and D =

5 0 0
0 1/2 0
0 0 1

.

f(x⃗) = QDx⃗ transforms f by first scaling x⃗’s first component by 5, second component
by 1/2, and leaving the third component as-is, and then rotating it by the orthogonal
matrix Q.

Orthogonal matrices rotate the vectors that they’re multiplied by. In R2, this is a rotation
by some angle θ. It’s harder to describe rotations in R3 and beyond, but the key property
that describes the effect of an orthogonal matrix Q is that for any vector x⃗,

∥Qx⃗∥ = ∥x⃗∥

as you proved in Homework 5, meaning that all an orthogonal matrix is doing is
changing the angle of the vector, not its length.

So, f(x⃗) first scales x⃗’s components, and then rotates the resulting vector.
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c) Using your A = QD decomposition from part b), find A−1.

Hint: Recall that for orthogonal matrices, QQT = QTQ = I . And, for any invertible matrices A and
B, (AB)−1 = B−1A−1.

Solution:
Since A = QD, we have

A−1 = D−1Q−1

Since D is diagonal, its inverse is just the diagonal matrix with the reciprocal of each
diagonal entry. This corresponds to “unstretching” the vector in each dimension. So,

D−1 =

1/5 0 0
0 2 0
0 0 1


And, since Q is orthogonal, we know QTQ = I , meaning that Q−1 = QT , i.e. Q’s inverse
is its transpose. This corresponds to “undoing” the rotation of the vector.

Q−1 = QT =

0 3/5 4/5
0 4/5 −3/5
1 0 0


Putting these building blocks together gives us

A−1 = D−1Q−1 = D−1QT =

1/5 0 0
0 2 0
0 0 1

0 3/5 4/5
0 4/5 −3/5
1 0 0

 =

0 3/25 4/25
0 8/5 −6/5
1 0 0



d) Recall from Chapter 2.9 that the determinant of an n × n matrix A, det(A), describes how
much the matrix scales the “volume” of an n-dimensional cube with side length 1.

Given the English definition of f from part b) alone, find det(A). (Don’t skip to the next page!)

Solution: Recall, f(x⃗) first scales x⃗’s first component by 5, second component by 1/2,
and leaves the third component as-is, and then it rotates the resulting vector in a way
that preserves its length.

Intuitively, det(A) should be the product of the scaling factors, i.e. 5 · 1/2 · 1 = 5/2.
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e) In general, the determinant of a 3× 3 matrix M =

a b c
d e f
g h i

 is given by∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣︸ ︷︷ ︸
det(M)

= a

∣∣∣∣e f
h i

∣∣∣∣− b

∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣

For instance, the −b

∣∣∣∣d f
g i

∣∣∣∣ term in the determinant involves deleting row 1 and column 2 of M

and taking the determinant of the remaining 2× 2 matrix.

Use this formula directly on A from part a) to verify that your intuitive answer from part d) is
correct.

Solution:

A =

0 0 1
3 4/10 0
4 −3/10 0


Using the provided formula gives us

det(A) = 0 ·
∣∣∣∣ 4/10 0
−3/10 0

∣∣∣∣− 0 ·
∣∣∣∣3 0
4 0

∣∣∣∣+ 1 ·
∣∣∣∣3 4/10
4 −3/10

∣∣∣∣
= 0+ 0+ 1 · (3 · (−3/10)− 4/10 · 4)

= − 9

10
− 16

10

= −5

2

Note that the sign of the determinant is negative; it’s the absolute value of the deter-
minant that tells us the stretching factor for the volume. The sign is a function of the
orientation of the transformed parallelpiped (which is not particularly important for our
purposes).

f) Find the determinant of

B =

1 2 3
4 5 6
7 8 9


What do you notice?
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Solution:

det(B) = 1 ·
∣∣∣∣5 6
8 9

∣∣∣∣− 2 ·
∣∣∣∣4 6
7 9

∣∣∣∣+ 3 ·
∣∣∣∣4 5
7 8

∣∣∣∣
= 1(45− 48)− 2(36− 42) + 3(32− 35)

= −3+ 12− 9

= 0

Since det(B) = 0, B’s columns are linearly dependent, and so B is not invertible. We’ve
seen this example B before;

column 3 = −column 1 + 2 · column 2
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