

EECS 245, Winter 2026

LEC 5

Vectors

This week, read

Ch. 3

Agenda

- What have we learned so far, and what do we need vectors for?

2.5

Vectors

- Definition

- Norm

- Addition and scalar multiplication

- Linear combinations

3.1-3.2

Announcements

- HW 3 due on

~~Friday~~ **Monday**

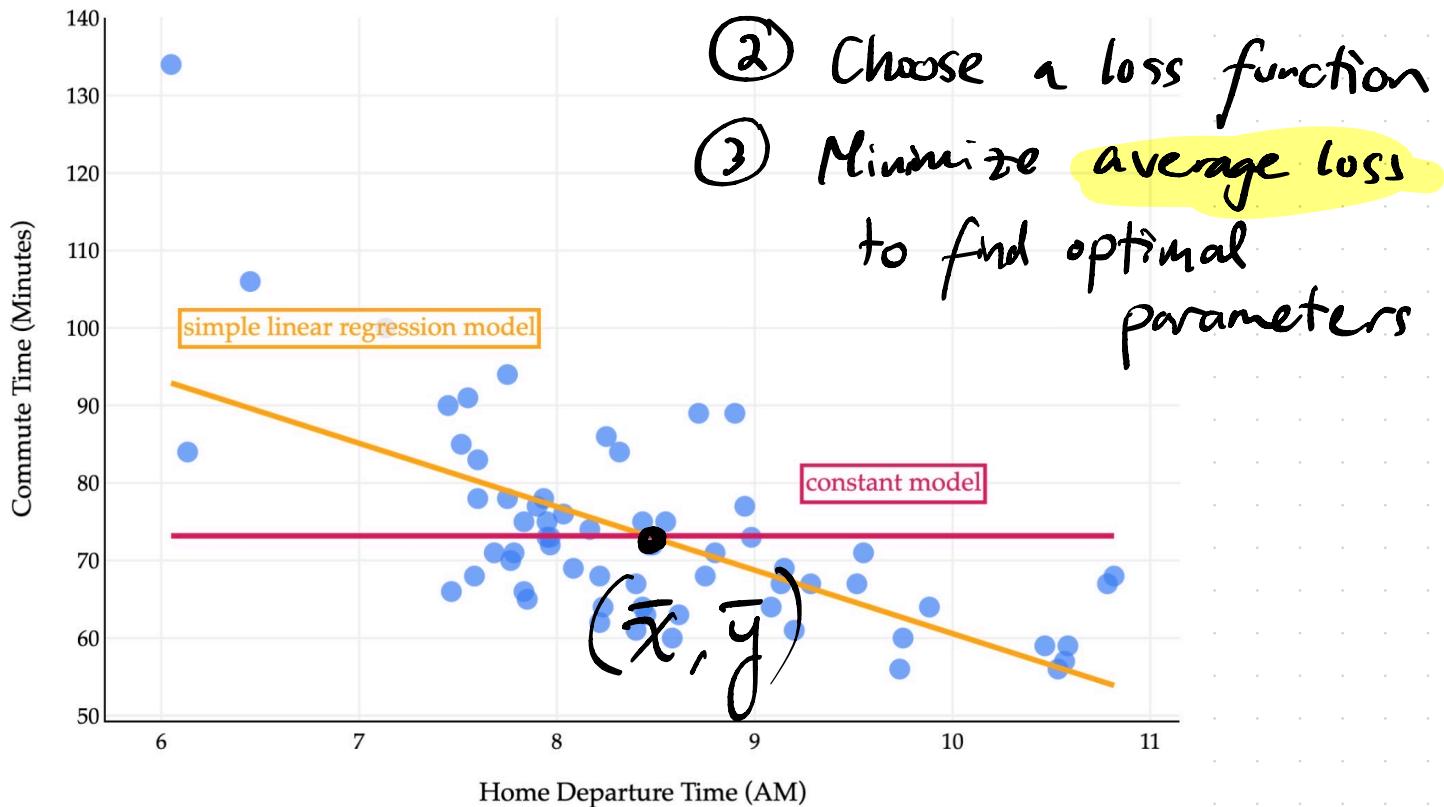
- Includes a survey

- HW 4 deadline
still next Friday,
so finish early

- HW 1 regrades due
tomorrow

- HW 2 sol'ns up

- Will email about alt.
exams tomorrow



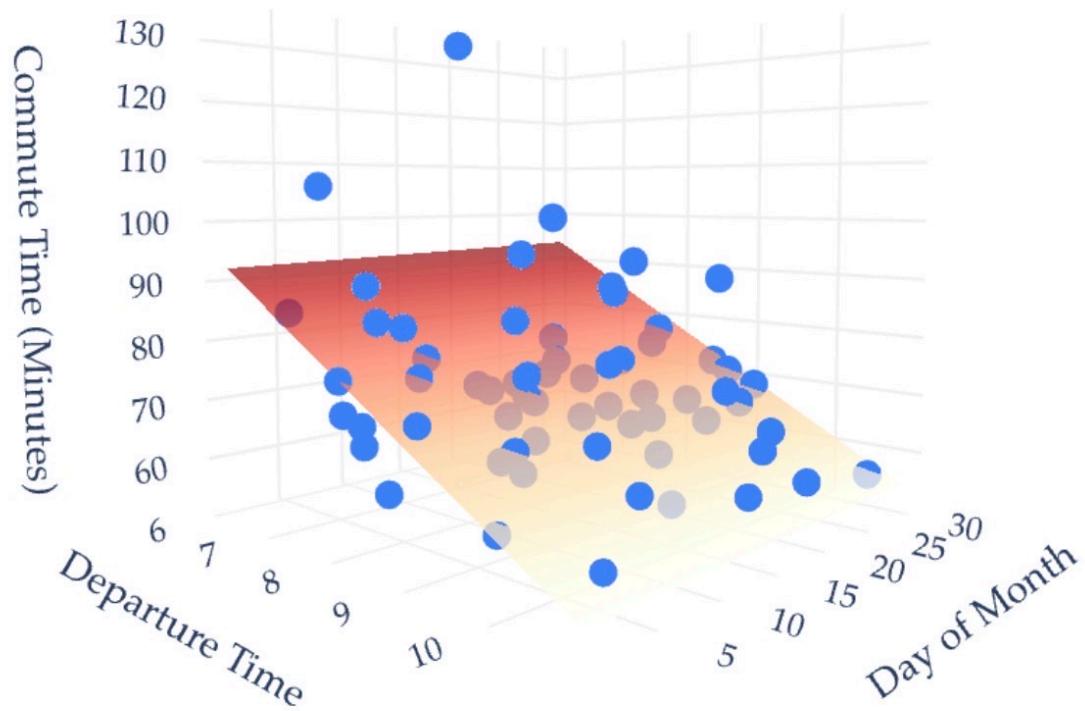
	date	day	departure_hour	minutes
0	5/15/2023	Mon	10.816667	68.0
1	5/16/2023	Tue	7.750000	94.0
2	5/22/2023	Mon	8.450000	63.0
3	5/23/2023	Tue	7.133333	100.0
4	5/30/2023	Tue	9.150000	69.0

↓
day of month

"Multiple" linear
regression
→ multiple features

$$h(\text{dept. hour}_i, \text{dom}_i) = w_0 + w_1(\text{dept. hour}_i) + w_2(\text{dom}_i)$$

plane in 3D!



$$h(\text{dept. hour}_i, \text{dom}_i) = w_0 + w_1(\text{dept. hour}_i) + w_2(\text{dom}_i)$$

$$R_{\text{sq}}(w_0, w_1, w_2) = \frac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1(\text{dept. hour}_i) + w_2(\text{dom}_i)) \right)^2$$

→ To find w_0^* , w_1^* , w_2^* , we need to compute

$$\frac{\partial R}{\partial w_0}, \frac{\partial R}{\partial w_1}, \frac{\partial R}{\partial w_2} \quad \text{and solve when all are 0}$$

→ let's find a more efficient solution!

Vectors (Ch. 3.1)

vector : an ordered list of numbers

$$\vec{v} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$$

3 components

$$\vec{w} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$$

$\vec{v}, \vec{w} \in \mathbb{R}^3$
"v and w are in R three"

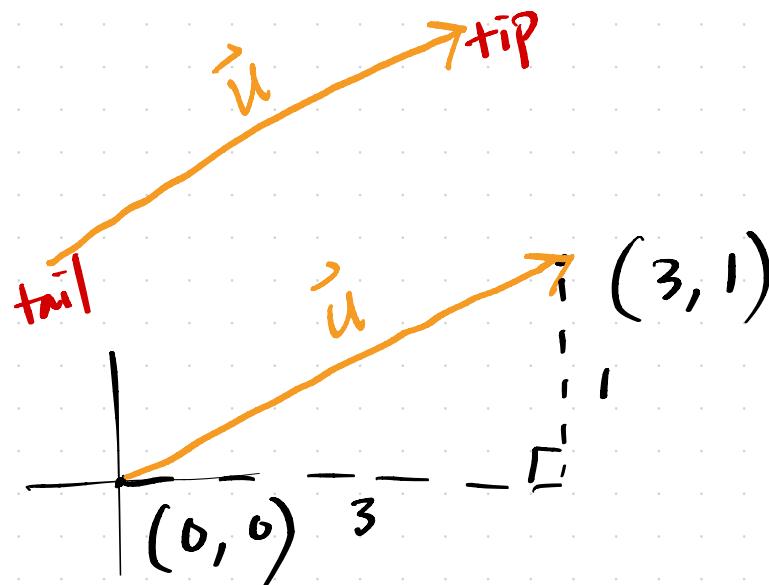
$$\vec{v} \in \mathbb{R}^n$$

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_n \end{bmatrix}$$

here, v_i is a **scalar**
but in a different context,
 \vec{v}_i could refer to a
vector

"Length" of a vector

$$\vec{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$



$$\text{length} = \sqrt{3^2 + 1^2} = \sqrt{10} = \|\vec{u}\|$$

$\vec{v} \in \mathbb{R}^n$

called the L_2 norm,
which is the default
(L_1 also exists, so do others)

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} = \sqrt{\sum_{i=1}^n v_i^2}$$

formal term: "norm"

means the same as "length" or "magnitude"

① Addition

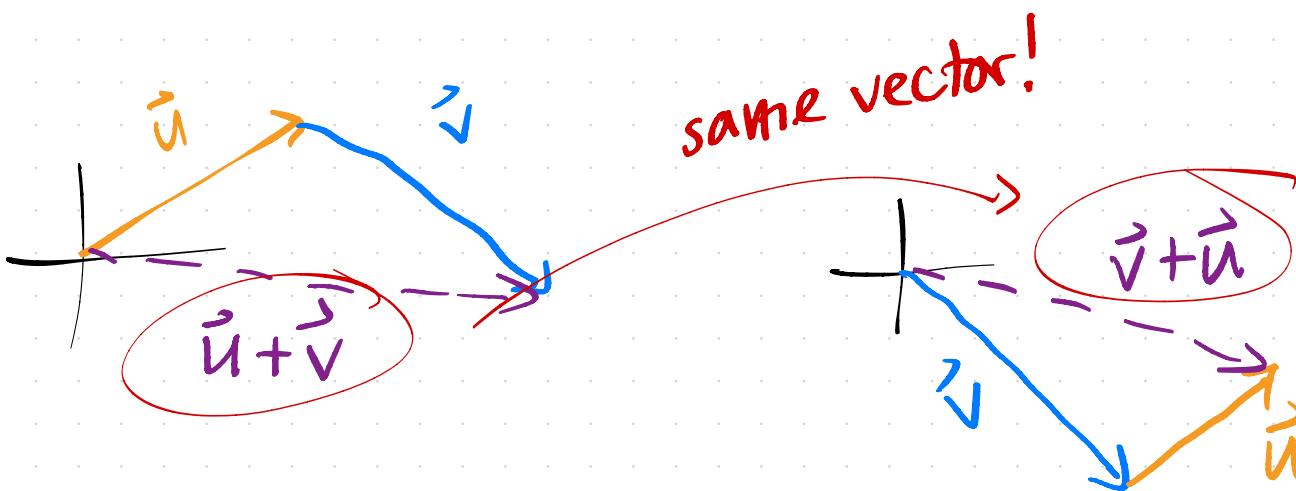
$\vec{u}, \vec{v} \in \mathbb{R}^n$

need to have same
number of components

$$\vec{u} + \vec{v} = \begin{bmatrix} u_1 & + v_1 \\ u_2 & + v_2 \\ u_3 & + v_3 \\ \vdots & \\ u_n & + v_n \end{bmatrix} \quad \text{"element-wise"}$$
$$= \vec{v} + \vec{u}$$

vector addition is
"COMMUTATIVE"

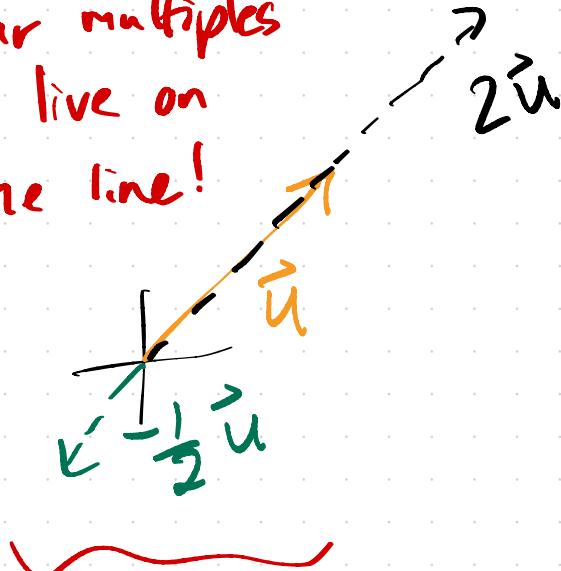
$$\vec{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \quad \vec{v} = \begin{bmatrix} 4 \\ -6 \end{bmatrix}$$



② scalar multiplication

i.e. multiplying a vector by a number

all scalar multiples
of \vec{u} live on
the same line!



scalar multiplication
changes length!

$$c \vec{y} = \begin{bmatrix} c v_1 \\ c v_2 \\ c v_3 \\ \vdots \\ c v_n \end{bmatrix}$$

"Linear combination"

"a little bit of \vec{u} plus
a little bit of \vec{v} "

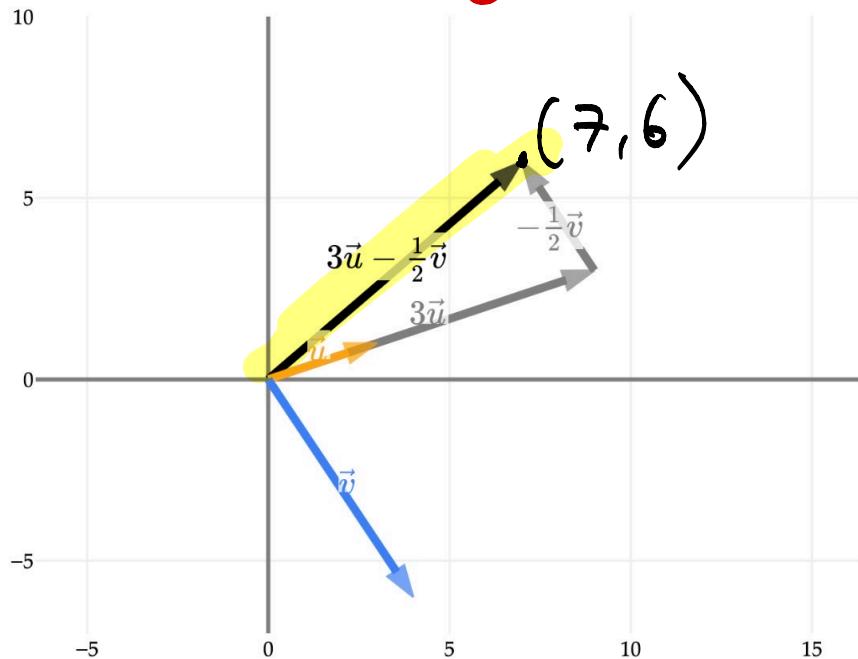
$$3\vec{u} - \frac{1}{2}\vec{v}$$

$$= 3 \begin{bmatrix} 3 \\ 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 4 \\ -6 \end{bmatrix}$$

$$= \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$

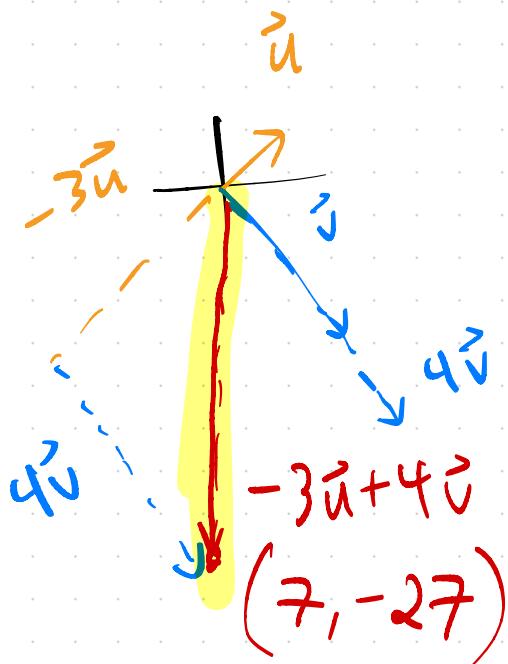
$$\vec{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \quad \vec{v} = \begin{bmatrix} 4 \\ -6 \end{bmatrix}$$

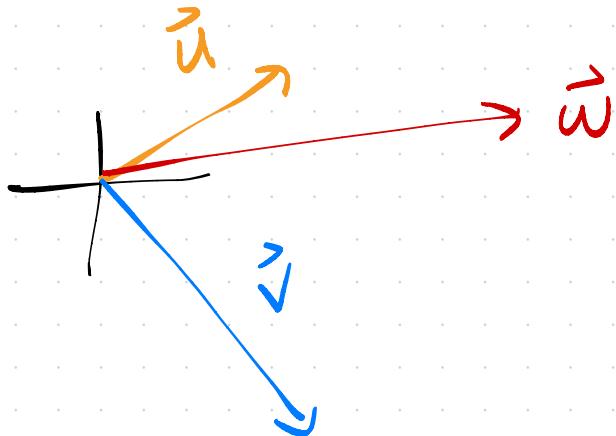
\vec{u}, \vec{v} are building blocks



$$\vec{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \quad \vec{v} = \begin{bmatrix} 4 \\ -6 \end{bmatrix}$$

$$-3\vec{u} + 4\vec{v} = \begin{bmatrix} -9 + 16 \\ -3 - 24 \end{bmatrix} = \begin{bmatrix} 7 \\ -27 \end{bmatrix}$$





General definition

suppose we have d vectors, each in \mathbb{R}^n ,

$$\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_d$$

A linear combination of those vectors is any other vector that can be written as

$$a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_d \vec{v}_d$$

where a_1, \dots, a_d are scalars!

Activity

$$\vec{x} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$$

$$\vec{y} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$$

their linear combinations fill a plane

$$c\vec{x} + d\vec{y} = \begin{bmatrix} 9 \\ -16 \\ -1 \end{bmatrix}$$

$$c \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} + d \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ -16 \\ -1 \end{bmatrix}$$

Goal: write $\begin{bmatrix} 9 \\ -16 \\ -1 \end{bmatrix}$

as a linear combination
of \vec{x} and \vec{y}

$$\begin{aligned} 3c + d &= 9 \\ -c + 4d &= -16 \end{aligned}$$

$$2c + 3d = -1$$

solve: $c=4, d=-3$