

EECS 245, Winter 2026

LEC 11

Matrices!

→ Read Ch. 5.1, will finish 5.2 soon

My freshman year transcript

Fall 2016

Class	Title	Un.	Gr.
CHEM 1A	General Chemistry	3	B-
CHEM 1AL	General Chemistry Laboratory	1	C+
COMPSCI 61A	The Structure and Interpretation of Computer Programs	4	B+
COMPSCI 70	Discrete Mathematics and Probability Theory	4	A
COMPSCI 195	Social Implications of Computer Technology	1	P
MATH 1A	Calculus	4	A+

kind of
like
EECS 245

Spring 2017

Class	Title	Un.	Gr.
COMPSCI 61B	Data Structures	4	B+
COMPSCI 97	Field Study	1	P
COMPSCI 197	Field Study	1	P
ELENG 16A	Designing Information Devices and Systems I	4	B-
MATH 110	Linear Algebra	4	C
MATH 128A	Numerical Analysis	4	B+

Math
217

That said, grades still do matter.

The easiest path to a good grade is to do the labs and homeworks yourself **without ChatGPT** AND fully understand the solutions

exams 70%, ^{labs +} homeworks 30%

On the bright side: don't forget the redemption policy!

Agenda

Read 5.1 + 5.2
(5.2 in progress)

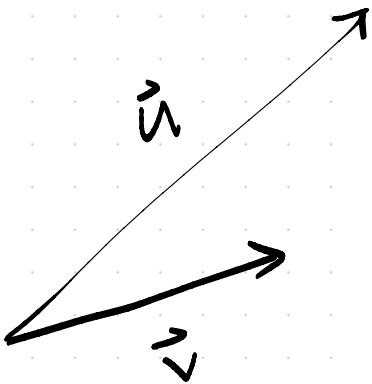
- What's the point?
- Matrices
 - Addition/scalar mult.
 - Matrix-vector mult.
 - Matrix-matrix mult.
 - Transpose & identity matrices

Announcements

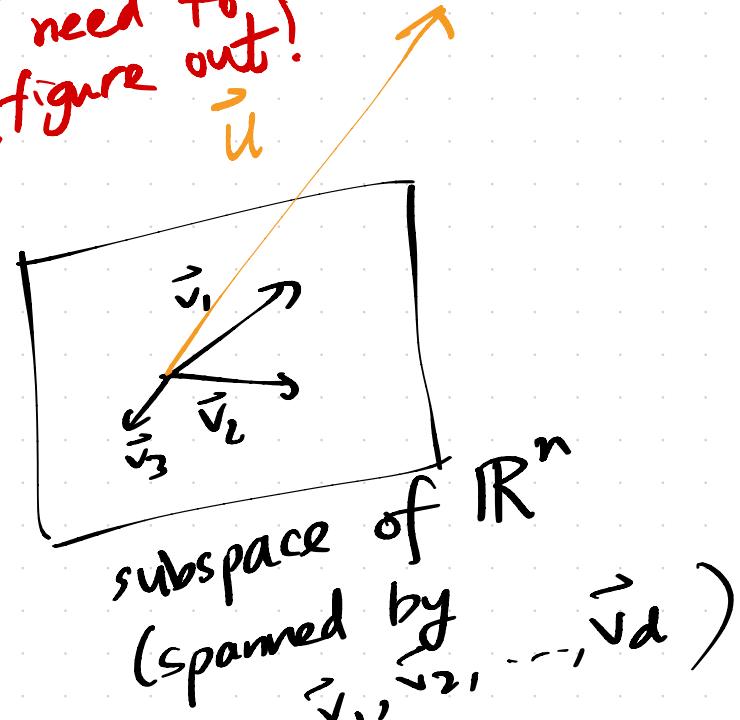
- Midterm regrades due on Tuesday; check solutions AND Grade Report + common misconceptions
- 1-on-1 check-ins with me available
- No lab this week
- HW 6 will come out on Friday

What's the point?

this is
what we need to
figure out!
↓↓ \vec{u}



Approximating one vector
using one other vector



Which vector in
subspace is
closest to \vec{u} ?

Matrix : rectangular array of numbers

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 2 & -1 & 9 \\ 0 & -2 & 0 \\ -2 & 0 & 0 \end{bmatrix}_{4 \times 3}$$

\vec{v}_1 \vec{v}_2 \vec{v}_3

4 rows, 3 columns

4×3

$A \in \mathbb{R}^{4 \times 3}$

$$A_{23} = 9$$

column vectors, written
next to each other

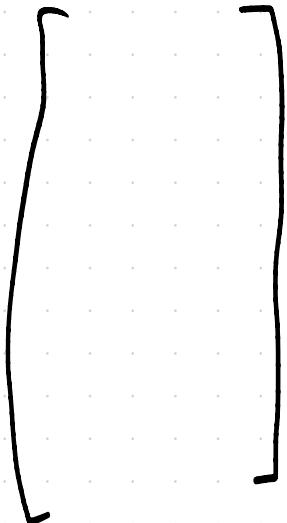
A_{ij} = row i ,
col j

In general,

A is $n \times d$

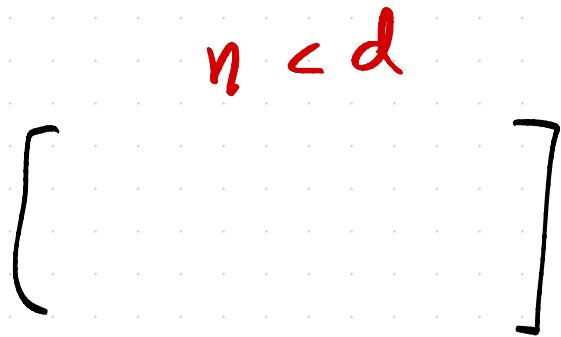
↑
rows
↑
columns

$$n > d$$



tall

$$n = d$$



wide

$$n < d$$

Addition and scalar multiplication

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 2 & 1 & 9 \\ 0 & -1 & 0 \\ 2 & -2 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

we can add A and B because dimensions are the same!

$$3A - B =$$

$$\begin{bmatrix} 9 & & \\ & 1,3 & \\ -11 & & \\ & 3,2 & \end{bmatrix}$$

"Golden Rule" for Matrix Multiplication

In order to be able to multiply

A
 $n \times d$ and B
 $d \times P$
columns in A = # rows in B

AB has shape $n \times P$
(Outer dimensions)

Matrix-vector multiplication

$\vec{x} \in \mathbb{R}^3$

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 2 & 1 & 9 \\ 0 & -1 & 0 \\ 2 & -2 & 0 \end{bmatrix}$$

$$\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$

dot product of \vec{x} with every row of A

$$A \vec{x} = \begin{bmatrix} 15 \\ 29 \\ 0 \\ 2 \end{bmatrix}$$

$4 \times 3 \quad 3 \times 1 \quad 4 \times 1$

$$\begin{bmatrix} 2 \\ 1 \\ 9 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 2 & 1 & 9 \\ 0 & -1 & 0 \\ 2 & -2 & 0 \end{bmatrix}$$

$$\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$

$$A\vec{x} = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 0 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ -1 \\ -1 \\ -2 \end{bmatrix} + 3 \begin{bmatrix} 4 \\ 9 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 15 \\ 29 \\ 0 \\ 2 \end{bmatrix}$$

Important

$A\vec{x}$ is a linear combination
of the columns in A ,
with the coefficients from \vec{x}

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 2 & 1 & 9 \\ 0 & -1 & 0 \\ 2 & -2 & 0 \end{bmatrix}$$

4×3

$$B = \begin{bmatrix} 1 & 2 \\ 0 & 7 \\ 3 & 2 \end{bmatrix}$$

3×2

match!

$$AB = \begin{bmatrix} 15 & 21 \\ 29 & 29 \\ 0 & : \\ 2 & \end{bmatrix}$$

4×2

col j of AB is $A \cdot (\text{col j of } B)$

Properties

- $(AB)C = A(BC)$ associative ✓
- $(A+B)C = AC + BC$ distributive ✓
- NOT COMMUTATIVE !!!
in general, $AB \neq BA$

$A_{n \times d} \quad B_{d \times p}$

AB ✓

just because AB is
a valid product,

BA might not be!

$B_{d \times p} \quad A_{n \times d}$

$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 0 \end{bmatrix} \quad 3 \times 2$$

A

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix} \quad 2 \times 3$$

B

even if both
are valid,
they don't
need to
have the
same shape!

$$A B \rightarrow 3 \times 3$$

3x2 2x3

$$B A \rightarrow 2 \times 2$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

even if A, B square, $AB \neq BA$ in general!

$$AB = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

$$BA = \begin{bmatrix} 23 \\ \quad \quad \quad \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Activity 4.1 in 5.1

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

"diagonal matrix"

$$S = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$\vec{x} = \begin{bmatrix} 4 \\ 6 \\ 12 \end{bmatrix}$$

$$P\vec{x}, S\vec{x}, PS\vec{x}, SP\vec{x}$$

$$\begin{bmatrix} 12 \\ 4 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 16 \\ 3 \\ 36 \end{bmatrix}$$

$$\begin{bmatrix} 36 \\ 16 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 48 \\ 2 \\ 18 \end{bmatrix}$$

$$PS \neq SP$$

identity matrix, I

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

I_2

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 6 & 3 \\ -3 & 4 & 2 \\ \pi & 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 3 \\ -3 & 4 & 2 \\ \pi & 2 & 0 \end{bmatrix}$$

I_3

transpose of a matrix

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \\ 4 & -6 \end{bmatrix}$$

A^T 's columns
are A 's rows

$$A^T = \begin{bmatrix} 2 & 1 & 4 \\ 3 & 0 & -6 \end{bmatrix}$$

$$(A^T)_{ij} = A_{ji}$$

$$(AB)^T = B^T A^T$$

Important!

Read 5.2

Ponder: Simplify $\|A\vec{x}\|^2$