

EECS 245 Fall 2025 Math for ML

Lecture 20: Eigenvalues and Eigenvectors, Continued Read Chapter 5.1!

Announcements Agenda > MT2 scores on Gradescope > 1 on 1 check-ins available all about eigen-things > HW 10 coming Saturday vectors values spaces bases

XTX + \(\frac{1}{\interpret}\) why is this always invertible?

Square, nxn matrix A think about linear transformations from Rn -> PR (non-zero)
eigenvectiv V: AT = AT when multiplied by A, is direction didn't change; if was just scaled by a factor of ? eigen value

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
if is an eigenvector of A, so is CV , for any $C \neq 0$
Let $V = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \end{bmatrix}$

$$A = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow \lambda_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ eigenvector of } A$$
with $\lambda_1 = 3$

$$=3\begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
is also
$$=$$

eignec of A

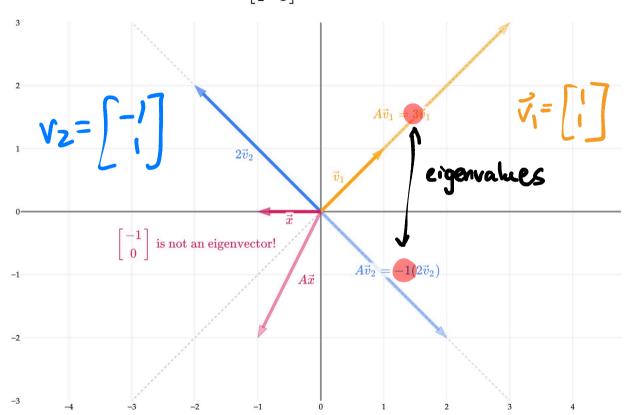
with
$$\lambda = 3$$

$$\begin{bmatrix} -1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & 3 & 3 \\ -2 & 4 & 1 \end{bmatrix}$$

$$= (-1)$$

so,
$$\vec{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 is an eigenvector corresponding to $\lambda_2 = -1$

Visualizing the eigenvectors of $A = egin{bmatrix} 1 & 2 \ 2 & 1 \end{bmatrix}$



Visualizing the eigenvectors of $B = \begin{bmatrix} 2 & 5 \\ 1 & 0 \end{bmatrix}$ Here, $\lambda_1 = 3.45$ $\lambda_2 = -1.45$ $Aec{v}_1=3.45ec{v}_1$ is still not an eigenvector! $Aec{x}$ $Aec{v}_2 = -1.45(3ec{v}_2)$

Neigenvalues=array([3.44948974, -1.44948974]), eigenvectors=array([[-0.82311938], [0.27843404 0.56786837] True in general : sum of

A=
$$\begin{bmatrix} 1 & 4 \\ 3 & 12 \end{bmatrix}$$

$$= \begin{bmatrix} 13 \times \\ 3 & 12 \end{bmatrix}$$

$$= \begin{bmatrix} 13 \times \\ 3 & 12 \end{bmatrix}$$

$$= \begin{bmatrix} 13 \times \\ 3 \times \end{bmatrix}$$
both seme, since any vector on that line

basis for nullsp(A):

$$z = \sqrt{3}$$
 $z = \sqrt{3}$
 $z = \sqrt{3}$

A has an eigenvalue of O not invertible

$$A = \begin{bmatrix} 1 & a \\ 2 & 1 \end{bmatrix}$$
 had $\lambda_1 = 3$ with $\lambda_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ what are the eigenvalues of A^2 ?

What eigenvectors?

 $A^{2} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$

if is an eigrec with eigral A of A, then $A^{2}\vec{v} = AA\vec{v} = A(\lambda\vec{v}) = \lambda(A\vec{v})$ and direction! $= \lambda(\lambda\vec{v})$ $= \lambda(\lambda\vec{v})$ then, \tilde{v} is an eigrec of A^2 with eigral λ^2 .

possible for A2 to have an eigenvector

Hat A doesn't have

think: rotations

Characteristic $p(\lambda) = det(A - \lambda I)$ degreen polynomial eigenvalues ne solutions to $p(\lambda) = det(A - \lambda I) = 0$

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

$$det(A - \lambda I) = det\begin{bmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{bmatrix}$$

$$= (1 - \lambda)^{2} - 4$$

$$= \lambda^{2} - 2\lambda + 1 - 4$$

$$= \lambda^{2} - 2\lambda + 1 - 4$$

 $= \lambda^2 - 2\lambda - 3 = (\lambda + 1)(\lambda - 3) = 0$

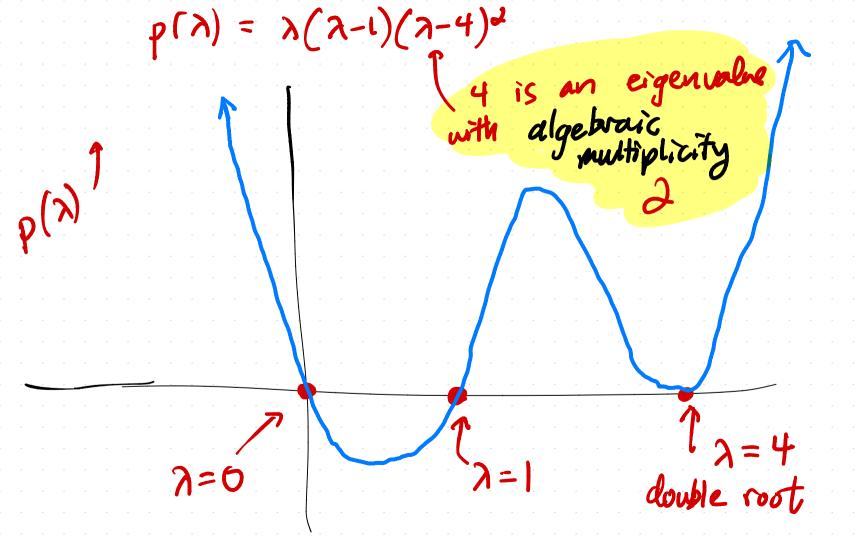
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$

$$p(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} 4 - \lambda & 0 \\ -\lambda & 0 - \lambda \end{bmatrix}$$

$$0 = 4 - \lambda$$

 $=(4-\lambda)(1-\lambda)(0-\lambda)(4-\lambda)$

 $=\lambda(\lambda-1)(\lambda-4)^{2}$



$$A = \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix} = 5$$

$$6 = 6$$

$$6 = 6$$

$$9 = 6$$

$$(3 - \lambda)^{2} + 16 = 0$$

$$(3, 16)$$

in the long run, what /.
of games does Michigan

$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix} \rightarrow uM$$

$$0.2 & 0.7 \rightarrow 05U$$

$$uM \rightarrow 05U \rightarrow$$

\(\lambda_0\)		
$\vec{\chi}_1 = \vec{A} \vec{\chi}_0 =$	0.8 0-3	
$\chi = A \overline{\chi} =$		0.2
	0.2 0.T	
	<u> </u>	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 1 2 2 2 2 2	<u>.</u>
\angle - $A \times = 1$	5 1 = A x	
$\vec{x}_2 = A \vec{x}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$		

in general,

 $\vec{\chi}_{k} = A^{k} \vec{\chi}_{o}$

multiplying by A steps
one itention
into the future!

dig idea

(see notes for code):

 $\times 1 = [0.8 \ 0.2]$ $x_2 = [0.7 \ 0.3]$ $x_3 = [0.65 \ 0.35]$ $x 4 = [0.625 \ 0.375]$ $x 5 = [0.6125 \ 0.3875]$ $x_6 = [0.60625 \ 0.39375]$ $x 7 = [0.603125 \ 0.396875]$ \times 8 = [0.6015625 0.3984375] $x 9 = [0.60078125 \ 0.39921875]$ x 10 = [0.60039063 0.39960938] \times 11 = [0.60019531 0.39980469] \times 12 = [0.60009766 0.39990234] $\times 13 = [0.60004883 \ 0.39995117]$

 \times 14 = [0.60002441 0.39997559]

of A (corresponding to $\lambda = 1$)