

EECS 245 Fall 2025 Math for ML

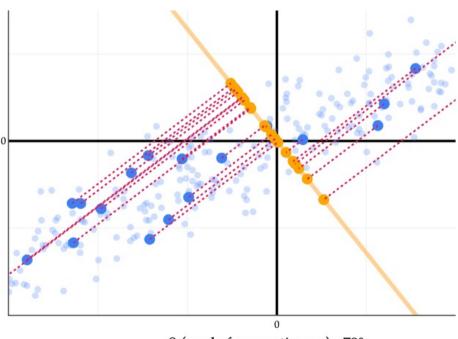
Lecture 26: PCA, Continued

Read: Ch 5.4 (more details added)

Agenda Amouncements More details on PCA! - Hw 11 due Sunday, Will appear on the exam no slip days but will be gentle: if 90% of the class fills out BOTH the End-of-Sem survey and evols, everyone gets 2% overel & C - Practice problems worksheet coming soon!

Dig picture: dinensionality reduction now do we make see new interactive animation in Ch. 5.4!

The shorter the orthogonal errors are, the more spread out the orange points are!



 θ (angle from optimum): -78°

-180° -142° -104° -66° -28° +10° +48° +86° +124° +162

$$PV(\vec{v}) = \frac{1}{n} ||\vec{x}\vec{v}||^2$$

$$projected$$

$$variance$$

$$= variance of$$

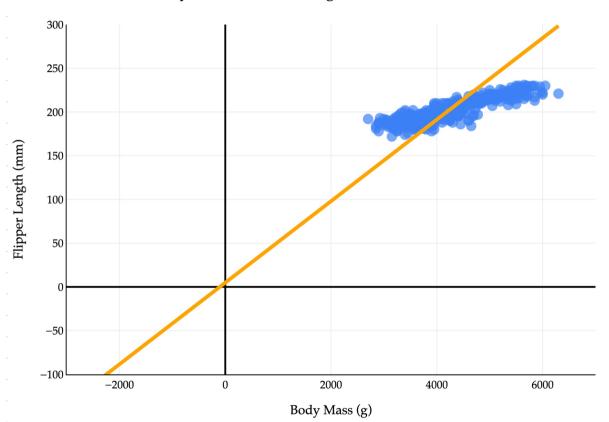
$$-2.62, -1.49, -...$$

$$\frac{\vec{x}}{x} \cdot \vec{v}$$

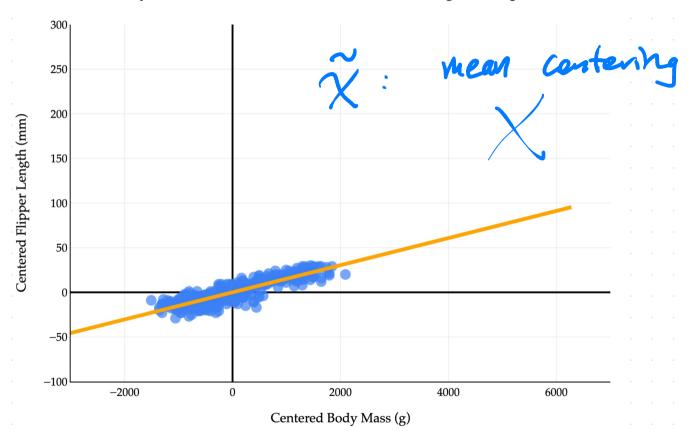
$$\frac{\vec{x}}{x} \cdot \vec{v}$$

Principal Component 1 Value

Our data isn't usually located near the origin...



...which is why we center the data first! This doesn't change its shape.



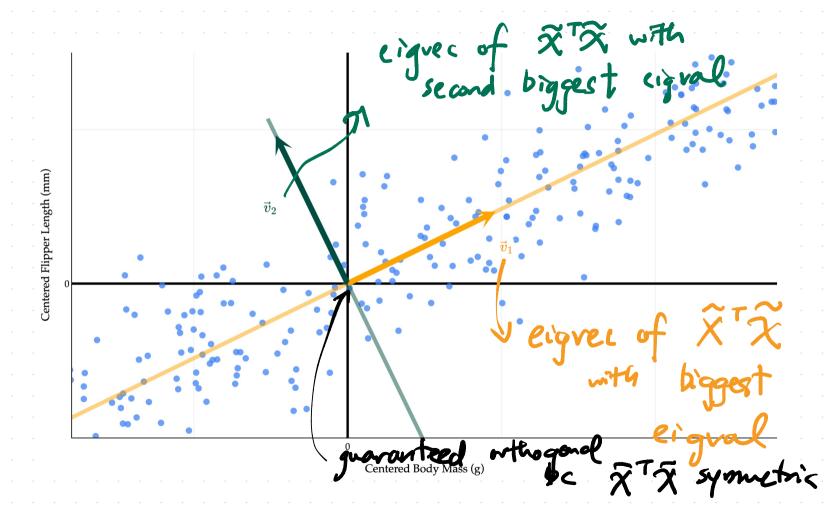
$$f(\vec{v}) = \frac{\|\vec{\chi}\vec{v}\|^2}{\|\vec{v}\|^2}$$
Regievely

where \vec{v} that maximizes $f(\vec{v})$
is the eigenvector of

 $\vec{\chi}^T \vec{\chi}$ with the

biggest eigenvalue!

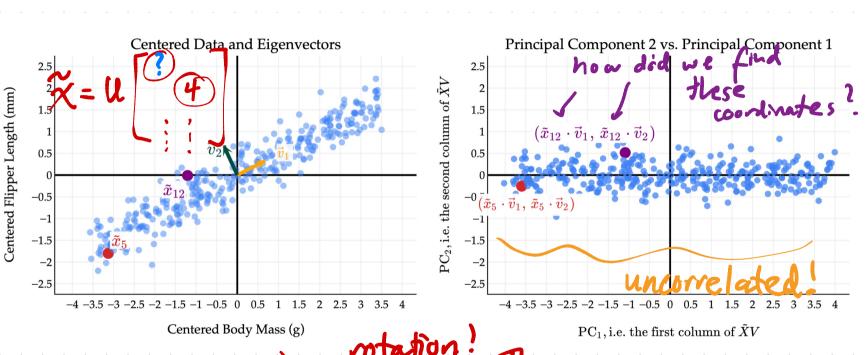
review the



~= UZV cols of V we 'agences of cols are the eigenvecs of XXT $\tilde{\chi}^{\intercal}\tilde{\chi}$

Dig idea: SVD (on the centered matrix)
finds the most important directions!

"principal component" = 'new feature



computing principal components Vi is the j'44 column of if X is n xd,
is Rd PC; = Xv; Xvj is Rn

variance of a PC:

$$P(j = \widetilde{X}\widetilde{J}_{j})$$

variance of $P(j = \frac{1}{n} || \widetilde{X}\widetilde{J}_{j}||^{2})$

remember, \widetilde{J}_{j} is column \widetilde{J}_{j} in $\widetilde{X} = U \leq V \stackrel{T}{J}_{j}$

how does this help?

variance $= \frac{1}{n} || \widetilde{J}_{j} ||^{2} = \frac{1}{n} || \widetilde{J}_{j$

Suppose X is a 51×5 matrix, whose first 3 rows are given by

first 3 rows of
$$X = \begin{bmatrix} 3 & 12 & 5 & 1 & 5 \\ 3 & 4 & 8 & 2 & 1 \\ 1 & 2 & 7 & 2 & 1 \end{bmatrix}$$

var $PC = 5$

Onsider the following information about the columns of X.

						• •
	Column 1	Column 2	Column 3	Column 4	Column 5	
Mean	2	3	10 _	5	1	Q^{*}
Variance	0.3	0.3	Λ-8	0.3	0.3	
			7 0 . 0			5 92

Suppose the values along the diagonal of Σ are 9, 4, 2, 1, and 0.

- a) What is rank(X)? Give your answer as an integer.
- **b)** What proportion of the total variance in *X* is accounted for by the second principal component? Give your answer as a fraction.

Let \tilde{X} be the centered version of X, and let $\tilde{X} = U\Sigma V^T$ be the singular value decomposition of \tilde{X} .

- c) We want to choose the first k principal components, such that at least 95% of the variance in X is accounted for. What is the smallest possible value of k that we can choose?
- **d)** Notice that the table provided does not include the variance of column 3. Given all the information above, what is the variance of column 3?

